
Equivariant K-theory, affine Grassmannian and perfection

Jakub Löwit

Abstract

We study torus-equivariant algebraic K-theory of affine Schubert varieties in the perfect
affine Grassmannians over Fp. We further compare it to the torus-equivariant Hochschild ho-
mology of perfect complexes, which has a geometric description in terms of global functions
on certain fixed-point schemes. We prove that Fp-linearly, this comparison is an isomorphism.
Our approach is quite constructive, resulting in new computations of these K-theory rings. We
establish various structural results for equivariant perfect algebraic K-theory on the way; we
believe these are of independent interest.

0 Introduction

0.1 Motivation and context

Affine Grassmannians and multiplicative Higgs moduli stacks. Motivated by the geometric
Langlands program, [Hau23; Hau24] formulated a conjectural picture for mirror symmetry between
Higgs moduli spaces for Langlands dual groups. The supports of his mirrors are modelled by families
of certain affine Springer fibers. The global functions on these families are conjecturally given by the
equivariant cohomology of affine Schubert varieties, the case of partial flag varieties being worked
out in [HR22].

This comparison conceptually clarifies if we replace equivariant cohomology with equivariant
algebraic K-theory, which relates to functions on families of multiplicative affine Springer fibers,
and consequently to multiplicative Higgs moduli spaces [Wan24] by Beauville–Laszlo gluing.

The aim of this paper is to study these K-groups and their relationship to the rings of functions
on multiplicative affine Springer fibers independently in the setup of perfect algebraic geometry. In
particular, we prove the expected isomorphism in this setting – see Theorem 0.1.

Equivariant algebraic K-theory and trace maps. Given a group scheme G acting on a qcqs
scheme X, we have the equivariant algebraic K-theory spectrum KG(X) of [Tho88; TT90] built
from the category of G-equivariant perfect complexes on X. Its zeroeth homotopy group KG

0 (X) is
a commutative ring via tensor product.

Starting from the same datum, we can record the fixed points of each g ∈ G on X and glue them
to a family over G denoted FixG(X), see §1.1 for details. Doing this for the loop group action on the
affine Grassmannian returns certain families of multiplicative affine Springer fibers [Yun17, §2.7.3].

There is a natural comparison map from equivariant algebraic K-theory to G-invariant global
functions on FixG(X), see §1.4. This is an isomorphism in interesting cases, allowing us to describe
such rings by KG

0 (X). Reinterpreting FixG(X) in terms of equivariant Hochschild homology, this is
precisely the Dennis trace map [McC94; KM00; DGM12; BGT13; BFN10; Toë14; HSS17; AMR17],
which was put to great use in algebraic K-theory and arithmetic geometry over last fifty years –
however, its use for equivariant algebraic K-theory of projective varieties has not been explored yet.

For singular schemes, algebraic K-theory is hard to compute. In geometric representation theory,
this is mostly bypassed by instead computing algebraic G-theory – algebraic K-theory of coherent
sheaves [Tho88; TT90]. Unfortunately, this simplification discards a lot of important information:
for example, G-theory does not have a natural ring structure, making it useless for our purpose.

We believe that it is actually possible to compute equivariant algebraic K-theory – or at least
its homotopy-invariant version KH, see [Wei89; Hoy20; Kha22] – for the examples of our interest,
and link these computations to geometric representation theory.
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Perfect geometry. Algebraic geometry over Fp has the feature of carrying the Frobenius endomor-
phism φ and there is a canonical procedure called perfection which turns φ into an automorphism.
It was realized in [Zhu17b; BS17] that perfection forces desirable homological properties (such as de-
scent for vector bundles along proper maps); this was in particular used to construct the Witt-vector
affine Grassmannian as a perfect ind-scheme.

In fact, perfection simplifies equivariant algebraic K-theory and the above-discussed trace map,
while preserving a good amount of interesting information. In the non-equivariant case, the result
of perfection on algebraic K-theory is also considered in [KM21; Cou23; AMM22]. It is thus very
inviting to study our trace map in the perfect setup: perfect affine Grassmannians provide important
examples in their own right, while many technical issues (present in characteristic zero) simplify.

The representation-theoretic phenomena occurring in perfect geometry are also of considerable
interest: they encode Frobenius twisting in positive characteristic representation theory. The effect
of perfection on reductive group schemes and their representations was studied by [CW24].

0.2 Results

Our main aim in this paper is to study the trace map (1.4.1), (1.4.3) for affine Schubert varieties
X≤µ in the perfect affine Grassmannian Gr for GLn over k = Fp discussed in §5.1. Let T be the
perfected diagonal torus of GLn. We prove the following.

Theorem 0.1 (Theorem 5.5). Let µ be a dominant coweight of T and X≤µ the corresponding perfect
affine Schubert variety. Then the trace map gives an equivalence

tr : KT (X≤µ, k)
≃−→ RΓ(FixT

T
(X≤µ),O). (0.2.1)

Moreover:

• both sides are supported in homological degree zero,

• integrally, KT (X≤µ) ≃ KHT (X≤µ).

The proof of Theorem 0.1 goes as follows.
We first interpret RΓ(FixT

T
(X≤µ),O) in terms of equivariant Hochschild homology HHT (X≤µ, k)

in the sense of §1.3. This puts both sides of (0.2.1) on the equal footing of k-linear localizing
invariants [BGT13; HSS17; Tam18; LT19]. In doing so, we take the opportunity to discuss the trace
map, record its properties, relate it to existing literature and show some examples. Most of this is
known to experts, but the literature is a bit sparse: the case of global quotients was not exploited in
detail and some of our statements even seem to be new. To give some intuition, we discuss partial flag
varieties where the trace map gives an isomorphism in degree zero in Example 1.34. This identifies
their KG

0 with global invariant functions on multiplicative Grothendieck–Springer resolutions. We
also explain how the degree zero trace map factors through equivariant homotopy K-theory KHT

0

in Theorem 1.41.
Secondly, we discuss equivariant algebraic K-theory and equivariant Hochschild homology for

perfect schemes. After starting this project, we noted that [KM21; AMM22; Cou23] studied non-
equivariant algebraic K-theory of perfect schemes and we take advantage of their methods. We
establish basic structural properties, noting that both sides of the trace map behave compatibly
under perfection. Most notably, we check descent for localizing invariants on T -equivariant perfect
abstract blowup squares.

Theorem 0.2 (Theorem 3.11). Localizing invariants satisfy proper excision on T -equivariant perfect
abstract blowup squares. This in particular applies to KT (−) and HHT (−, k).

We further observe that KG
i (X) are Z[ 1p ]-modules for i ≥ 1 in Lemma 3.5. We also prove in

Observation 3.7 that equivariant K-theory and G-theory agree for perfect schemes.
We then deduce Theorem 0.1 inductively on the affine Schubert stratification by descent from

partial affine Demazure resolutions, the main input being Theorem 0.2 and semi-orthogonal decom-
positions for stratified Grassmannian bundles [Jia23].

Finally, it is not only the case that the trace map is an abstract isomorphism, but we can employ
Theorem 0.2 to obtain explicit presentations for the rings in question. To showcase this, we compute
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KT
0 for some singular Schubert varieties in the GL2 and GL3 affine Grassmannians – see Examples

6.1, 6.2 for details.

We expect direct analogues forGLn-equivariant (or even L+GLn-equivariant) algebraicK-theory.
Also, our computations can be run for equivariant homotopy K-theory KHGLn in any characteristic
(without perfection); we further believe the rings in question are then given by the base-change of
equivariant cohomology along the map H•GLn

(pt) → KGLn
0 (pt) → KGLn

• (pt), the first arrow given

in coordinates as Z[t1, . . . , tn]Sn → Z[t±11 , . . . , t±nn ]Sn . However, we refrain from discussing these
questions here.

We close up the paper with more computations of perfect K-theory. In particular, we use the
existing literature together with Theorem 0.2 to understand the trace map for all perfectly proper
toric varieties.

Theorem 0.3 (Theorem 7.8). Let T be a perfect split torus and X any perfectly proper toric variety.
Then the trace map induces an equivalence

KT (X, k)
≃−→ RΓ(FixT

T
(X),O).

and both sides are supported in homological degrees ≤ 0.

For singular X, this contains interesting information about equivariant negative K-theory. This
can be nonzero – see Note 7.9.

0.3 Structure

We start in §1 by introducing fixed-point schemes of group actions and their basic properties. We
continue by discussing the trace map from equivariant algebraic K-theory to their global functions
in elementary terms. We explain the relationship to the existing literature on Hochschild homology
and derived loop spaces. The contents of this section work in any characteristic.

In §2 we give a short overview of perfect algebraic geometry, which is the setup for the rest of
the paper. We discuss equivariant K-theory of perfect schemes in §3, explaining some of its main
structural properties. In §4 we show how the previous two sections fit together via the trace map,
allowing us to control its behaviour.

We focus on perfect affine Grassmannians in §5, proving that the trace map is an isomorphism
for the T -equivariant K-theory of affine Schubert varieties in the GLn-affine Grassmannian – see
Theorem 5.5. In §6 we explicitly compute presentations for these rings in some small examples. In
fact, these computations work equally well for equivariant homotopy K-theory KH in the classical
setup (including characteristic zero).

We conclude with more examples in §7. These should give intuition about perfect K-theory, but
are orthogonal to our original motivation. We in particular discuss the trace map for perfect toric
varieties in Theorem 7.8.
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1 Fixed-point schemes and traces from equivariant K-theory

We work over a fixed base ring k. We denote by Schk the category of k-schemes. Let G be a group
scheme over k and denote SchGk the category of G-equivariant k-schemes. Unless specified otherwise,
quotients are taken as stack quotients in the fpqc topology.
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1.1 Fixed-point schemes of group actions

Definition of fixed point families. Suppose G acts on X ∈ SchGk via m : G × X → X. We
define the associated fixed-point scheme as the fiber product of schemes

FixG(X) G×X G

X X ×X

m×pr2

pr1

∆X

(1.1.1)

Its functor of points is given by

FixG(X) : R 7→ {(g, x) ∈ G(R)×X(R) | gx = x}.

The horizontal composition in (1.1.1) gives a map π : FixG(X) → G. For any g ∈ G(k), the fiber
π−1(g) parametrizes those x ∈ X(R) which are fixed by g. Given any S ∈ Schk with a map S → G,
we obtain

FixS(X) := S ×
G
FixG (1.1.2)

and view it as the fixed point family of the restriction of the G-action to S.

Example 1.1. For instance, when applied to the full flag variety X = G/B with the obvious
left G-action, FixG(X) returns the multiplicative Grothendieck–Springer resolution; the fibers of
π : FixG(G/B)→ G are the multiplicative Springer fibers. For other parabolic subgroups P , it is a
parabolic version thereof. See Example 1.34 for more. These play an important role in geometric
representation theory.

Functoriality and equivariant structure. If X
f−→ Y is a G-equivariant morphism, the defining

diagram of FixG(X) naturally maps to the defining diagram FixG(Y ) via f on each occurrence of
X and idG on the group. By the universal property of fiber products, this induces a map

FixG(f) : FixG(X) −→ FixG(Y ),

which we also call f by abusing notation.
Now let g ∈ G(R) and note the following: a point x ∈ X(R) is fixed by an element h ∈ G(R) if

and only if its translate gx ∈ X(R) is fixed by ghg−1 ∈ G(R). In other words, FixG(X) carries a
functorial G-action

(AdG×m) : G× FixG(X) −→ FixG(X),

(g, (h, x)) 7→ (ghg−1, gx).

In particular, FixG(pt) ∈ SchGk returns G with the adjoint action G×G Ad−−→ G, (g, h) 7→ ghg−1.
We denote the stack quotient by G

G . For general X ∈ SchGk we denote the stack quotient of FixG(X)
by G as FixG

G
(X). This has a canonical structure map

FixG
G
(X)

π−→ G
G .

Taking quotients of (1.1.1) further gives the following fiber square of global quotient stacks.

FixG
G
(X) G×X

G
G
G

G\X X×X
G

m×pr2

π

∆X

(1.1.3)

As in (1.1.2), for any algebraic stack S over k with a map S → G
G we write FixS(X) for the base

change of FixG
G
(X) to S. In particular, base change along the quotient map G → G

G returns back

FixG(X), making our notation consistent.
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Steinberg section. Let G be a reductive group over a field and denote s := G
G

the GIT quotient

of G by its adjoint action. There is the canonical affinization map G
G → s. Denote further Greg ↪→ G

the regular locus of G consisting of points whose centralizer has the minimal possible dimension
(equal to the rank of G) [Hum95, §4]; this is an open subvariety of codimension ≥ 2 by [Hum95,
§4.13]. Let ρ : Greg ↪→ G → s be the natural map. A Steinberg section is a section of this map ρ.
Such a section is not unique, but always exists [Hum95, §4.15].

Via such a Steinberg section, s ↪→ G is a closed subscheme intersecting every regular conjugacy
class of G in a single geometric point. It is often very useful to restrict attention to Fixs(X). This
is a scheme whose global functions often agree with global functions on the stack FixG

G
(X).

Open and closed immersions.

Proposition 1.2. Assume that a G-equivariant morphism f : U → X has one of the following
properties. Then the same is true for f : FixG(U)→ FixG(X).

(i) monomorphism

(ii) open immersion

(iii) closed immersion

In particular, FixG(−) preserves Zariski covers and locally closed stratifications.

Proof. If f : U → X is a G-equivariant monomorphism, one can immediately check that on functors
of points

FixG(U)(R) = {(g, u) ∈ G(R)× U(R) | gu = u} = (FixG(X)×X U)(R)

so that the map on fixed point schemes is also a monomorphism, proving (i). Moreover, the above
computation shows that the diagram

FixG(U) FixG(X)

U X

(1.1.4)

is fibered. To prove (ii), (iii), note that these properties are stable under base change; the result
thus follows from the fiber square (1.1.4); similarly for Zariski covers. The case of locally closed
stratifications is now immediate.

Properness and global functions.

Proposition 1.3. The fixed point scheme satisfies the following.

(i) If X ∈ Schk is separated, then the FixG(X)→ G×X is a closed immersion.

(ii) If X ∈ Schk is proper, then FixG(X)→ G is also proper.

(iii) If X ∈ Schk is proper and G is smooth and quasi-compact over k, then FixG
G
(X)→ G

G is also
proper.

Proof. When X is separated over k, ∆X is a closed immersion, so the same is true for its base change
FixG(X)→ G×X, proving (i). When X is proper over k, then also G×X → G is proper. Since X
is in particular separated over k, the map FixG(X)→ G×X is a closed immersion by part (i), so in
particular proper. Therefore also the composition FixG(X) → G ×X → G is proper, proving (ii).
Part (iii) then follows by descent for proper maps along the smooth quasi-compact quotient map by
G.

Notation 1.4. We will use the homological grading on derived global sections RΓ(X,−) of coherent
sheaves. We denote it by lower indices as

Hi(X,O) = RΓi(X,O) := RΓ−i(X,O), ∀i ∈ Z .

The reason for this notation is compatibility with the homological grading on algebraic K-theory.
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Remark 1.5. We have seen that for aG-action on a proper varietyX, the structure map FixG(X)→
G is proper. Hence the global functions H0(FixG(X),O) form a finitely generated H0(G,O)-module.
By construction, we also have

H0(FixG
G
(X),O) = H0(FixG(X),O)G.

1.2 Comparison to derived loop spaces

Reduced and derived versions. There are the following versions. On the one hand, FixG
G
(X)

will be often non-reduced, and we can take its reduction FixredG
G

(X). On the other hand, we may

take the defining fiber product (1.1.1) in derived schemes, giving a derived enhancement which we
denote FixLG

G
(X). We get closed immersions

FixredG
G

(X) ↪→ FixG
G
(X) ↪→ FixLG

G
(X). (1.2.1)

Derived loop spaces. The above construction is not new: it is a special case of the construction
of derived loop stacks of [BFN10, §2.4], [Toë14, §4.4]; also see [KP20]. This interpretation has useful
structural properties, so we spell out the (well-known) relationship.1

For any derived stack X over k, its derived loop space LX is defined by the derived fiber product

LX X

X X×
k
X X

X pt

∆

∆
(1.2.2)

Alternatively, this is the mapping space L(X) = Maps(S1,X) of derived stacks. In other words, it
is the derived inertia stack of X. The same definition can be done in a non-derived way, giving the
classical substack L(X)cl ↪→ L(X).

Identification of (derived) fixed-point schemes and (derived) loop spaces. In order to
compare our fixed-point schemes to loop spaces, consider the following (non-derived) fiber squares.

FixG
G
(X) G×X

G G\X

G\X X×X
G G\X ×G\X

m×pr2 ∆G\X

∆X

(1.2.3)

The left-hand square was constructed in (1.1.3). The right-hand square can be easily constructed
on the level of functors of points. Let R ∈ Schk be a test scheme. Then we obtain the groupoids:

(G\X)(R) =
{
(P, f) | P principal G-bundle on R,

f :P→X G-equivariant map

}
,(

X ×X
G

)
(R) =

{
(P1, f1, f2) | P principal G-bundle on R,

f1,f2:P→X G-equivariant maps

}
,

(G\X ×G\X) (R) =
{
(P1,P2, f1, f2) | P1,P2 principal G-bundles on R,

f1:P1→X, f2:P2→X G-equivariant maps

}
,(

G×X
G

)
(R) =

{
(P, f1, f2) | P principal G-bundle on R,

f1:P→G, f2:P→X G-equivariant maps

}
=

{
(P, f, ψ) |

P principal G-bundle on R,
ψ:P→P automorphism,

f :P→X G-equivariant map

}
1We thank Quoc Ho for helpful discussions regarding this.
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and the last expression is indeed given by the fiber product of three preceding groupoids along the
obvious maps.

Lemma 1.6. We have the following isomorphism of stacks:

FixG
G
(X) = L(G\X)cl and FixLG

G
(X) = L(G\X).

Proof. As both small squares in the (1.2.3) are fibered, the big rectangle is fibered also, proving the
first part. The derived version works by the same argument, with all fiber products derived and
testing on all derived affine schemes R over k.

Compatibility with twisted products.

Lemma 1.7. Taking L(−) commutes with all limits in derived stacks. Taking Lcl(−) commutes
with all limits in stacks.

Proof. This is clear since L and Lcl are defined in two steps using limit diagrams (1.2.2) in derived
stacks resp. stacks.

Setup 1.8. Let X1 be a G1-scheme, ρ1 : P1 → X1 a G1-equivariant principal G2-bundle. Let X2

be a G2-scheme. Then we have the associated twisted product, which is again a G1-scheme:

X1×̃X2 = P1

G2

×X2.

This formally amounts to the following fiber product of global quotient stacks:

G1\
(
X1×̃X2

)
G2\X2

G1\X1 G2\ pt
P1

(1.2.4)

The next useful lemma follows easily from the loop space interpretation of fixed-point schemes
(but is less obvious from the fixed-point scheme definition).

Lemma 1.9. The fixed-point stack of the twisted product fits into the fibered square

FixG1
G1

(X1×̃X2) FixG2
G2

(X2)

FixG1
G1

(X1)
G2

G2

G1

G1

π2

π1

ρ1

Proof. Apply L(−) to (1.2.4). The resulting square is a pullback by Lemma 1.7. We conclude by
Lemma 1.6 together with FixG

G
(pt) = G

G .

1.3 Two viewpoints on Hochschild homology

We recall how derived fixed-point schemes relate to equivariant Hochschild homology. This inter-
pretation has useful structural properties such as the projective bundle formula.

We first fix some standard notation. We write Vect(−) for the category of vector bundles,
QCoh(−) for the category of quasi-coherent sheaves, Perf(−) for the ∞-category of perfect com-
plexes, DQCoh(−) for the ∞-category of quasi-coherent sheaves. Given a group scheme G over k,
we denote the categories of G-equivariant objects by the superscript (−)G; this matches the corre-
sponding category on the associated quotient stack.
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Flawless stacks. We write Ind(−) for the functor of ind-completion of∞-categories. The following
definition is due to [BFN10, Definition 3.2].

Definition 1.10 (Flawless stacks). A derived algebraic stack X over k is called flawless2 iff it has
affine diagonal and the canonical comparison map gives an equivalence of ∞-categories

Ind(Perf(X )) ≃ DQCoh(X ).

There are many flawless stacks [BFN10, p.4]. In characteristic zero, a quotient of a quasi-
projective derived scheme by an affine group scheme is flawless. In characteristic p, a quotient of a
quasi-projective derived scheme by a linearly reductive group (such as T = Grm) is flawless.

On the other hand, reductive groups in characteristic p are usually not linearly reductive, and
global quotients by such are usually not flawless.

Categorical and geometric models for Hochschild homology. There are the following two
models of Hochschild homology over k, defined for any derived stack over k. They agree on flawless
stacks. For concreteness, we stick to the case of a global quotient X = G\X.

• Take the k-linear ∞-category of perfect complexes Perf(X). Taking the geometric realization
of the k-linear cyclic nerve produces the algebra object

HHG(X, k) := HH(X, k) := HH(Perf(X), k) = |N cyc
/k Perf(X)| ∈ D(k).

This fits into the framework of k-linear localizing invariants of [BGT13; HSS17].

• Take the derived loop space L(X) = FixLG
G
(X) and consider the algebra object given by the

global sections of its structure sheaf

RΓ(LX,O) = RΓ(FixLG
G
(X),O) ∈ D(k).

Discussion 1.11 (Comparison and agreement). There is a natural comparison map

HH(X, k)
comp−−−→ RΓ(LX,O) (1.3.1)

The existence of this comparison map follows from [HSS17, Thm. 6.5] (to bootstrap this, one needs
to compose with the map from global sections of their Tannakian loop space to the global sections of
the derived loop space, and furthermore with the inclusion of homotopy fixed-points to all functions).

If X is a flawless derived algebraic stack over k, the comparison map (1.3.1) is an isomorphism.
Indeed, this identification works by the discussion [Che20, Example 2.2.20 and §2.2]. Strictly speak-
ing, [Che20] works in characteristic zero, but the only input is [BFN10, Theorem 1.2] valid over any
base ring k. (The case of qcqs k-schemes is classical: it follows by Zariski descent from the case of
k-algebras.)

Question 1.12. Let G = GLn over k = Fp. Take X ∈ SchGk . The stacks X = G\X are usually not
flawless. For example, taking X = pt, the classifying stack BG = G\ pt is not flawless: its structure
sheaf is perfect but not compact. Is the comparison map (1.3.1) still an isomorphism?

To the best of our knowledge, this is an open question. The standard approach to such comparison
is built on flawlessness, which does not appear to be the optimal assumption. See also [Che20,
Remark 2.2.21] for similar questions in characteristic zero.

1.4 Trace maps from equivariant K-theory

We now recall the trace map from equivariant algebraic K-theory to functions on the fixed-point
scheme and its relationship to the Dennis trace map.

2The authors of [BFN10] call this property perfect (as it has to do with perfect complexes), but there is an
unfortunate clash of terminology with the notion of a perfect stack in positive characteristic arithmetic geometry
(referring to Frobenius being automorphism). Since both notions appear in this paper, we invented the word flawless
to avoid confusion.
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Conventions for equivariant K-theory. Let Schqcqsk be the category of quasi-compact quasi-
separated k-schemes.

Notation 1.13. Given X ∈ Schqcqsk , we denote by K(X) the non-connective algebraic K-theory
spectrum of the category of perfect complexes Perf(X) on X in the sense of [TT90]. We denote
Ki(X), i ∈ Z its homotopy groups.

Let G be an affine algebraic group over k. If X ∈ Schqcqs,Gk , we denote KG(X) its equivariant
algebraic K-theory spectrum [Tho88]. This is the algebraic K-theory spectrum of the category
PerfG(X) of G-equivariant perfect complexes on X. Equivalently, it is the K-theory spectrum of
perfect complexes Perf(G\X) on the global quotient stack G\X. We denote by KG

i (X), i ∈ Z its
homotopy groups.

Notation 1.14. We write G(X) for the algebraic K-theory spectrum of cohomologically bounded
pseudo-coherent complexes on X [TT90, Definition 3.3], similarly GG(X) for the equivariant version
[Tho88].

Notation 1.15. We denote KH(X) the homotopy K-theory spectrum in the sense of [Wei89] and
KHG(X) its equivariant version defined via the simplicial spectrum KG(∆• × X). When G is a
torus, this agrees with the commonly used definitions by [Hoy20, Theorem 3.1.(4)].

Notation 1.16. We write ⊗R for tensor product over R. We denote Ki(X)k := Ki(X)⊗Zk. We
write ⊗L

R for derived tensor product over R and ⊗iR := TorRi (−,−) for the Tor-groups.
Given a coefficient ring Λ, we denote K(X,Λ) the K-theory spectrum with coefficients in Λ.

Taking Λ = Fp, this has homotopy groups

Ki(X,Fp) ∼=
(
Ki(X,Z)⊗0

Z Fp
)
⊕
(
Ki−1(X,Z)⊗1

Z Fp
)
.

The equivariant trace map in degree zero. Let X ∈ Schqcqs,Gk and E ∈ VectG(X) be a G-
equivariant vector bundle on X. Let x ∈ Fixg(X)(k) be a fixed point of a given g ∈ G(k). Then g
acts on the fiber Ex and we may take the trace trg(Ex) ∈ k. This idea plays out as follows.

Construction 1.17. Let X ∈ Schqcqs,Gk . Then we define the ring homomorphism

tr : KG
0 (X) −→ H0(FixG

G
(X),O)

[E] 7→ ((g, x) 7→ trg(Ex))
(1.4.1)

Indeed, let E ∈ PerfG(X). Pick an affine test scheme SpecR ∈ Schk and let (g, x) ∈ FixG(X)(R)
be an R-valued point. Then the pullback Ex ∈ Perf(R) is strictly perfect – it is represented by
a bounded complex of projective R-modules acted on by g. Passing to an affine Zariski cover of
SpecR, we may even assume all of its terms are free. Then one can take the usual trace of g on this
complex

tr(g,x) E :=
∑
i

(−1)i trg Ex,i

and obtain a global function on SpecR.
This association is clearly additive: given a short exact sequence 0 → E′ → E → E′′ → 0 in

PerfG(X), one sees tr(g,x) E = tr(g,x) E
′+tr(g,x) E

′′. Moreover, if h : E′ → E is a quasi-isomorphism

in PerfG(X), then tr(g,x) E
′ = tr(g,x) E. Indeed, the mapping cone E′′ := cone(h) ∈ PerfG(X) of

h is acyclic, hence it suffices to see that its trace is zero by additivity. This can be easily seen by
induction on the degrees in which E′′ is nonzero by splitting off the top degree: one can always
produce a short exact sequence 0 → G′ → E′′ → G′′ → 0 in PerfG(X) where G′ is supported in a
shorter interval and G′′ is of the form (· · · → 0→ R⊕a

=−→ R⊕a → 0 . . . ).
Altogether, this assembles into the trace map (1.4.1): we land in algebraic functions, as we can

test on arbitrary R-points of FixG(X). The resulting function is also G-invariant, as taking traces
is invariant under the adjoint action of G on itself. Finally, the trace factors through KG

0 (X) by
[TT90, §1.5.6] and the above.

Observation 1.18. The trace map tr is a homomorphism of rings.

Proof. The trace of a tensor product is the product of traces of factors.
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This observation is essential for our applications: we can describe rings of functions on interesting
spaces via equivariant K-theory. Moreover, it explains why we need equivariant K-theory (and not
G-theory, which doesn’t have a natural ring structure). In fact, the above construction of the trace
map would not even work for G-theory.

Remark 1.19. Since X is defined over k, the trace extends to

tr : KG
0 (X)k −→ H0(FixG

G
(X),O).

See Discussion 1.22 for a finer version. Reformulating, the trace map amounts to a morphism

trX : FixG
G
(X)→ SpecKG

0 (X)k (1.4.2)

which factors through the affinization of the left-hand side.

The Dennis trace map. The above-discussed degree zero definition lifts to the level of spectra,
and even factors through finer versions of Hochschild homology. This is a classical construction
in algebraic K-theory. For explicit formulas, see [McC94; KM00] or the encyclopedic treatments
[Mad95; DGM12]. Also see [BGT13] for a modern approach via localizing invariants. It was further
interpreted geometrically in terms of derived loop stacks [BFN10; Toë14; HSS17; AMR17]. We recall
the simplest version sufficient for our purposes.

Recollection 1.20. Let Catperfk be the ∞-category of small, stable, idempotent complete, k-linear

∞-categories and exact functors. We will use the notion of localizing invariants E(−) on Catperfk in
the sense of [HSS17, §4–5]. The following are notable examples relevant to this paper.

(i) non-connective algebraic K-theory K(−) and its version with coefficients,

(ii) homotopy K-theory KH(−) and its version with coefficients,

(iii) Hochschild homology HH(−, k) relative to k.

In fact, K(−) is a universal localizing invariant, see [HSS17; BGT13]. The case of KH(−) follows
formally, see [LT19]. The versions with coefficients are also clear. Finally, HH(−, k) is a localizing

invariant on Catperfk in the sense of [HSS17] by the discussion in [LT19, p.30 after 3.8].

Notation 1.21. We evaluate localizing invariants on derived stacks through their ∞-categories of
perfect complexes Perf(−): given a derived stack X over k and a localizing invariant E, we denote

E(X) := E(Perf(X)).

Given X ∈ Schqcqs,Gk , we denote EG(X) := E(G\X) = E(Perf(G\X)) = E(PerfG(X)).

Discussion 1.22 (Traces). There are the following trace maps:

KG(X, k) HHG(X, k) RΓ(FixLG
G
(X),O).

trgeom

trcat comp (1.4.3)

The categorical trace trcat exists as KG(X, k) and HHG(X, k) fit in the framework of k-linear
localizing invariants of [BGT13; HSS17]. The geometric trace trgeom = trgeom ◦ comp extends the
degree zero definition presented above.

Remark 1.23. This gives a natural map KG
0 (X, k)→ H0(Fix

L
G
G
,O) extending Remark 1.19.

Recollection 1.24. Localizing invariants are in particular additive [HSS17, Definitions 5.11 and
5.16] or [Kha20, Definition 2.6]. They send semi-orthogonal decompositions to direct sums by
[Kha20, Lemma 2.8].

In particular, this is the case for K(−), KH(−), K(−, k) and HH(−, k); such direct sum de-
compositions are compatible with the trace map.
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1.5 Projective bundle formulas

We now recall the projective bundle formula and its more elaborate variants. This is essential
for controlling algebraic K-theory. All of these results ultimately rely on suitable semi-orthogonal
decompositions.

Projective bundle formula and consequences. Since bothK-theory and Hochschild homology
are localizing invariants, they automatically satisfy the equivariant projective bundle formula going
back to [TT90; Tho88].

Proposition 1.25. Let G act on X. Let E ∈ VectG(X) be a G-equivariant vector bundle of rank r
and P(E) its projectivization. Let E(−) be a localizing invariant. Then EG(−) satisfies the projective
bundle formula – there is a natural equivalence

EG(P(E)) ≃
r−1⊕
i=0

EG(X) (1.5.1)

compatible with natural maps between localizing invariants.

Proof. In the view of Recollection 1.24, localizing invariants satisfy the projective bundle formula
by the semi-orthogonal decomposition [Kha20, Theorem 3.3 and Corollary 3.6].

One consequence is the well-known splitting principle.

Lemma 1.26. Let c ∈ KG
0 (X) be the class of a G-equivariant vector bundle E on X of rank n. Then

there exists a G-equivariant morphism f : Y → X such that f∗ : KG
0 (X)→ KG

0 (Y ) is injective and
f∗[E] =

∑n
i [Li] for some G-equivariant line bundles Li on Y . Similarly for KG

0 (−, k).

Proof. Such Y can be constructed by induction on n. Let Y0 := X, E0 := E. Consider Y1 = P(E0)
with its canonical map f1 : Y1 → Y0. The tautological line bundle L1 on Y1 is a G-equivariant
subbundle of f∗1E0. The quotient E1 := f∗E0/L1 is a rank (n − 1) bundle on Y1 and we have
f∗1 [E] = [L1] + [E1]. Moreover, the pullback f∗ : KG

0 (Y0)k → KG
0 (Y1)k is injective by the projective

bundle theorem. We can continue by induction.

The following standard trick extends the projective bundle formula to flag varieties (alternatively,
one can deduce this from a suitable semi-orthogonal decomposition).

Discussion 1.27. Let X ∈ Schqcqs,Gk and E ∈ VectG(X). Let Y = FlagX(E, µ) be the associated
partial flag variety bundle of type µ over X. Take W = FlagX(E) to be the corresponding full flag
variety bundle. Then we have natural maps

W Y X

h

g f
(1.5.2)

and both g and h factor as towers of equivariant projective bundles.

Corollary 1.28. Let X ∈ Schqcqs,Gk and E ∈ VectG(X). Let Y = FlagX(E, µ) be the associated
partial flag variety bundle. Let E(−), E′(−) be localizing invariants and τ : E(−) → E′(−) a
natural map between them. Pick i ∈ Z. Then the following are equivalent:

(i) τi : E
G
i (X)→ E′Gi (X) is an isomorphism,

(ii) τi : E
G
i (Y )→ E′Gi (Y ) is an isomorphism.

Proof. For projective bundles, this follows immediately from (1.5.1). Applying the case of projective
bundles multiple times for the bundles appearing in the factorizations of g and h from (1.5.2), we
deduce the result for f .

Remark 1.29. We will later apply Corollary 1.28 to

• the trace map tr : KG(−, k)→ HHG(−, k),

• the natural map KG(−)→ KHG(−).

To phrase the first case in words: the trace map tr : KG(−, k)→ HHG(−, k) is an isomorphism for
X if and only if it is an isomorphism for Y .
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Stratified Grassmannian bundles. We will employ a similar statement for stratified projective
bundles. To make this work, we need to use their derived enhancements studied in [Jia22b; Jia22a;
Jia23].3

Recollection 1.30. Let E ∈ PerfG(X) be a perfect complex supported in homological degrees ≥ 0.
Denote byH0(E) ∈ QCohG(X) its zero homology group. Consider the relative derived Grassmannian
of rank j of E on X in the sense of [Jia22a, Definition 4.3], denoted

Y = GrassX(E, j)
f−→ X. (1.5.3)

This is a G-equivariant derived scheme. By [Jia22a, Proposition 4.7], its classical truncation is the
usual relative Grassmannian

Y cl = GrassX(H0(E), j)
fcl

−−→ X. (1.5.4)

Assume further that E has Tor-amplitude [1, 0] and j = 1. The category PerfG(Y ) then has
an explicit semi-orthogonal decomposition in terms of a flattening stratification for E by [Jia23,
Theorem 3.2 and Remark 1.1]. In particular, PerfG(X) is a semi-orthogonal summand of PerfG(Y )
via f∗.

In fact, we only need the following consequence.

Proposition 1.31. Let E ∈ PerfG(X) of Tor-amplitude [1, 0]. Let Y = GrassX(E, 1) → X be the
associated relative derived Grassmannian of rank 1. Let E(−) be a localizing invariant. Then EG(X)
is a direct summand of EG(Y ), compatibly with natural maps of localizing invariants.

Proof. Follows from Recollection 1.30 and Recollection 1.24.

In particular, KG(X, k)
trX−−→ HHG(X, k) is a direct summand of KG(Y, k)

trY−−→ HHG(Y, k).
Similarly for the comparison map from KG to KHG.

1.6 First examples

The trace map is an isomorphism in degree zero for interesting varieties arising in geometric repre-
sentation theory. Let us give the most basic examples of this phenomenon: first for the point and
then for partial flag varieties. An analogous trace map for equivariant cohomology in these examples
(and beyond) was studied in [HR22], which was an important motivation for us.

Equivariant point. Let G = GLn over a field k and T its diagonal torus. Alternatively, let G
be a split, semisimple, simply connected group of rank n over an algebraically closed field k and T
a maximal torus. Let W be the Weyl group. We start by noting how the above works out for the
equivariant point.

Example 1.32 (Torus-equivariant point). Let X = pt with the trivial T -action. Then the k-
linearized trace map gives an isomorphism

trX : KT
0 (pt, k)

∼=−→ H0(FixT
T
(pt),O).

Both sides are given by the localized polynomial ring k[t±11 , . . . , t±1n ].

Proof. Follows from the identification of the left-hand side with the k-linearized representation ring
R(T, k) and the right-hand side with H0(

T
T ,O) = H0(T,O). The trace map is then given by taking

characters of representations, giving the desired isomorphism.

Example 1.33 (Equivariant point). Let X = pt with the trivial G-action. Then the k-linearized
trace map gives an isomorphism

trX : KG
0 (pt, k)

∼=−→ H0(FixG
G
(pt),O).

Both sides are given by the localized polynomial ring k[t±11 , . . . , t±1n ]W , whose spectrum naturally
identifies with the Steinberg section s.

Proof. Under the identification of the left-hand side with the k-linearized representation ring R(G, k)
of G and the right-hand side with the ring of conjugacy-invariant functions on G, this is the classical
isomorphism [Hum95, §3.2], valid in any characteristic.

3We thank Andres Fernandez Herrero for pointing out the relevance of these results to us.
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Partial flag varieties. We illustrate the above notions for partial flag varieties. For the sake of
clarity, we stick to the case k = C and G = GLn. Given a dominant coweight µ of the diagonal torus
T of G, we write P = Pµ for the associated parabolic subgroup of G andWµ the corresponding Weyl
group. Let X = G/P be the quotient of G by P equipped with the left translation by G. Recall
from Example 1.1 that FixG(X) amounts to the multiplicative Grothendieck–Springer resolution.

We now show that the degree zero trace map is an isomorphism in this case, realizing (reduced)
rings of invariant functions on multiplicative Grothendieck–Springer resolutions via equivariant al-
gebraic K-theory. In fact, the derived and infinitesimal structures of the fixed-point scheme are
irrelevant.

Example 1.34 (Partial flag variety). Take k = C and consider X = G/P with G acting by left
translations. Then we get isomorphisms

trX : KG
0 (X, k)

∼=−→ H0(Fix
L
G
G
(X),O)

∼=−→ H0(Fix
red
G
G

(X),O)
∼=−→ H0(Fix

red
s (X),O). (1.6.1)

Both sides are given by the polynomial ring k[t±11 , . . . , t±1n ]Wµ .

Proof. Since the stacks in question are flawless, we can interpret H0(Fix
L
G
G
(X),O) as C-linear

Hochschild homology. The trace map is an isomorphism in degree 0 for the point by Example 1.33,
so the first map in (1.6.1) is an isomorphism by the projective bundle formula from Proposition 1.25.

Now note that

KG
0 (G/P ) = K0(G\G/P ) = K0(pt /P ) = R(P ) = R(L).

is the representation ring of the Levi quotient L = Lµ of P . This indeed matches Z[t±11 , . . . , t±1n ]Wµ .
Thus KG

0 (X, k) = k[t±11 , . . . , t±1n ]Wµ , giving the desired presentation. In particular, this ring is
reduced and normal.

Over a geometric point s ∈ s, the reduced fiber of KG
0 (X, k) consists of finitely many points

labelled by the set Eigµs of µ-partitions of the multiset of roots of s (regarded as a symmetric
polynomial). Similarly, the reduced fiber of Fixs(X) over s consists of finitely many points labelled
by the same set Eigµs , as these are the fixed points of (any) regular lift gs ∈ G of s. Now, trreds :
Fixreds (X)→ SpecKG

0 (X) is a well-defined map of (affine) schemes over s. It induces a bijection on
geometric points, as this it the case fiberwise over s. Since both sides are reduced and the target
is normal (it is the spectrum of a localized polynomial ring), we deduce that the whole composite
(1.6.1) is an isomorphism.

Note s intersects all regular conjugacy classes in G and G \ Greg has codimension at least 2.
We deduce that the restriction map H0(Fix

red
G
G

(X),O) → H0(Fix
red
s (X),O) is injective. It is also

surjective by the above, hence an isomorphism, proving the remaining isomorphism in (1.6.1).

1.7 Equivariant homotopy K-theory

We now recall the A1-homotopy invariant version of algebraic K-theory KH in the equivariant
setup. This satisfies proper excision, which is one of our main computational tools. We then use
fixed-point schemes to show that the non-derived trace map factors through KHT in degree zero.

Equivariant KH and proper excision. By Recollection 1.20, KH is a localizing invariant
on Catperfk . Let T be a torus over k. Then KHT (−) is A1-homotopy invariant and there is a
natural map KT (−) → KHT (−) which is an isomorphism on smooth schemes [Hoy20, Theorem
1.3]. Furthermore, KT (−) is indifferent to derived structures [LT19], [KR21, Theorem F]. Finally
KHT (−) satisfies proper excision on equivariant abstract blowups in any characteristic, which we
now recall.

Recollection 1.35. A pullback square in Schqcqs,Tk

Y E

X Z

f

i

(1.7.1)

is called an equivariant abstract blowup square if f is proper and i is a finitely presented closed
immersion such that f is an isomorphism over the open complement X \ Z.
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Proposition 1.36. Applying KHT (−) to (1.7.1) gives a homotopy fiber square

KHT (Y ) KHT (E)

KHT (X) KHT (Z)

Proof. This holds by [KR21, Theorem G].

Factorization of trace through KH in degree zero. The T -equivariant trace map from Con-
struction 1.17 factors through homotopy K-theory in degree zero.4 This is an elementary argument
using fixed-point schemes, but we didn’t find it in the existing literature. Such a factorization is
slightly surprising because Hochschild homology is not A1-homotopy invariant.

Notation 1.37. Let S be a base scheme and Z ∈ SchS with structure map π : Z → S. A function
f ∈ H0(Z,O) is called locally constant relatively to S if it Zariski locally on Z comes as a pullback
of a function on S along π.

Lemma 1.38. Let k be a base field, T a torus, X ∈ Schqcqs,Tk . Then the image of tr : KT
0 (X)k →

H0(FixT (X),O) lands in functions which are locally constant relatively to T .

Proof. Let E ∈ PerfT (X) be a perfect complex and trE ∈ H0(FixT (X),O) the corresponding func-
tion. We only need to prove the claim Zariski locally on FixT (X). Fix a test algebra R ∈ Algk with
S = SpecR and let (t, x) ∈ FixT (X)(R). Such (t, x) form a basis of the Zariski topology on FixT (X),
so it is enough to see that trt(E) is a pullback of a function along the projection FixT (X)→ T .

S FixT (X)

T ×X

T

(t, x)

t

But E(t,x) is a T -equivariant perfect complex on S and we may without loss of generality assume

it is a vector bundle. Equivalently, it is a Zd-graded projective module M =
⊕

i∈Zd Mi · ti. After

choosing an isomorphism T ∼= Gdm, the map t identifies with a d-tuple (r1, . . . , rd) of invertible
elements in R. With this notation, the trace of M at the given t = (r1, . . . , rd) ∈ T (R) is given by∑
i∈Zd(dimMi) ·ri where ri := ri11 · · · r

id
d . Hence the function trt Ex on S indeed comes as a pullback

along t : S → T . Since this holds for any (t, x), we have proved the lemma for T .

Corollary 1.39. For a reductive group G and X ∈ Schqcqs,Gk , the image of tr : KG
0 (X)k →

H0(Fix
red
G (X),O) lands in functions which are locally constant relatively to G.

Proof. Let E ∈ PerfG(X) and pick any k-valued point (g, x) of FixG(X). Then E(g,x) is equivariant
for the whole commutative subgroup scheme Cg of G over k generated by g. This sits in a short
exact sequence between its unipotent radical and maximal torus:

1→ Ug → Cg → Tg → 1

The trace does not depend on the unipotent part of g, while the torus case was handled above. The
lemma follows.

Denoting π : FixredG
G

(X) → G
G the structure map, we altogether see that the image of trX :

KG
0 (X)k → H0(Fix

red
G
G

(X),O) lands in functions which are locally constant relatively to G
G .

Lemma 1.40. Let G act on X and trivially on Y . Then

G\(X × Y ) = (G\X)× Y.
4We thank Andrei Konovalov and Roman Bezrukavnikov for related discussions.
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Proof. Straightforward check on functors of points.

Theorem 1.41. The trace maps factor as

trX : KT
0 (X)→ KHT

0 (X)→ H0(FixT
T
(X),O),

trX : KG
0 (X)→ KHG

0 (X)→ H0(Fix
red
G
G

(X),O).

Proof. The trace map assembles into a natural transformation trX : KT
0 (−)→ H0(FixT

T
(−),O). It

thus induces a map of simplicial rings

KT
0 (X ×∆•)→ H0(FixT

T
(X ×∆•),O)

and consequently a map between the colimits

colimKT
0 (X ×∆•)→ colimH0(FixT

T
(X ×∆•),O).

Since FixT
T
(X×∆n) = FixT

T
(X)×∆n by Lemma 1.40 and each of the affine spaces ∆n is connected,

it follows from Lemma 1.38 that for all n we get compatible factorizations

KT
0 (X ×∆n) H0(FixT

T
(X ×∆n),O)

KT
0 (X ×∆0) H0(FixT

T
(X ×∆0),O)

It formally follows that this induces a map from the colimit

KHT
0 (X) = colim

∆•
KT

0 (X ×∆•)→ H0(FixT
T
(X),O).

compatibly with the natural map KT
0 (X)→ KHT

0 (X).
The G-equivariant case is analogous, using Corollary 1.39.

2 Perfect schemes

In the rest of the paper, we restrict our attention to perfect schemes in characteristic p, which we
presently recall. See [BS17, §3], [Zhu17a, Appendix A] for a detailed introduction.

Perfect schemes in characteristic p. Let k be a perfect field; we take k = Fp. A scheme
X ∈ Schk is called perfect, if the Frobenius morphism φ : X → X is an isomorphism. The full
subcategory of perfect schemes is denoted Schperfk ⊆ Schk. Given a scheme X ∈ Schk, its perfection

Xperf ∈ Schperfk is defined as the N-indexed inverse limit along φ

Xperf := lim
φ
X.

Note that φ is an affine map. On affines, the perfection is simply given by iteratively adjoining p-th
roots of all functions. This gives a functor

(−)perf : Schk → Schperfk

X 7→ Xperf .

Setup 2.1. We denote Schfpk ⊆ Schk the full subcategory of finitely presented k-schemes. We denote
its objects by a subscript “0” as X0, Y0, f0 : Y0 → X0 and so on.

We work with the category Schpfpk of perfectly finitely presented perfect k-schemes (and perfectly
finitely presented morphisms) – see [BS17, §3]: we only consider objects and morphisms coming

as perfections of objects and morphism from Schfpk . We denote such perfection by dropping the
subscript: unless specified otherwise, X stands for the perfection of X0, f stands for the perfection
of f0, and so on.
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Basic properties. We recall some facts from [BS17, §3] about perfect schemes.

(i) the functor (−)perf : Schk → Schperfk is right adjoint to the inclusion Schperfk ⊆ Schk,

(ii) the functor (−)perf commutes with arbitrary limits, in particular with fiber products,

Indeed, the first line is clear from the definition; the second line follows formally. Many standard
properties of schemes are preserved under taking perfection – see [BS17, Lemma 3.4] for a list.

Functions and coherent sheaves.

(iii) perfect schemes are reduced,

(iv) global functions RΓ(−,O) on perfect schemes satisfy proper excision,

(v) for a coherent sheaf F ∈ QCoh(X0) it holds that H
i(X,F) = colimφ∗ Hi(X0, φ

∗,(i)(F)),

(vi) all perfect derived schemes are classical.

For (iii) note that all non-reducedness disappears in the colimit along Frobenius on functions.
Part (iv) is [BST17, Lemma 3.9], [BS17, Lemma 4.6]. Part (v) is a standard fact about the compat-
ibility of coherent cohomology with inverse limits along affine morphisms (by affineness of bonding
maps this follows from [Sta, Tag 073D or Tag 0GQU]). Part (vi) is [BS17, Corollary 11.9].

Rationality and perfection. Rational singularities are preserved under perfection.

Definition 2.2. A map of schemes f : Y → X is called rational if Rf∗ OY = OX .

Observation 2.3. Let f0 : Y0 → X0 be a rational map in Schfpk . Then its perfection is rational as
well.

Proof. Working Zariski-locally on X0, the rationality of f0 amounts to the following: For each open
affine U0 ⊆ X0, RΓ((YU )0,O(YU )0) = OU0

. Equivalently, this reads as

RΓi((YU )0,O(YU )0) =

{
0 if i ̸= 0,

OU0
if i = 0.

We need to prove that for each open affine U ⊆ X, RΓ(YU ,OYU
) = OU . This can be checked on

each cohomology group separately, where it follows from (v):

RΓi(YU ,OYU
) = colim

φ∗
RΓi((YU )0,O(YU )0) =

{
0 if i ̸= 0,

OU if i = 0.

Topological invariance.

(vi) the map Xperf → X is a universal homeomorphism,

(vii) a universal homeomorphism of perfect schemes is an isomorphism,

(viii) the functor (−)perf agrees with absolute weak normalization.

For (vi) and (vii), see [BS17, Theorem 3.7, Lemma 3.8]. It is straightforward to deduce (viii) – we
do this now for completeness.

Observation 2.4. Let Y0 ∈ Schk. Then its perfection Y is the absolute weak normalization of Y0.

Proof. We recall the notion of absolute weak normalization [Sta, Tag 0EUK] (also see [GT80; LV81;
Man80]). The absolute weak normalization Y awn

0 → Y0 of Y0 can be characterized as the initial
scheme equipped with a universal homeomorphism to Y0 [Sta, Tag 0EUS]. Let f0 : X0 → Y0 be the
absolute weak normalization of Y0. Taking perfections, we obtain the commutative square
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X Y

X0 Y0

f

f0

Now f0 is universal homeomorphism by design, so f is an isomorphism by (vii). Thus we get the
factorization Y → X0 → Y0 as indicated by the dashed arrow. Since Y is perfect, it is reduced by
(iii), so Y → X0 is an isomorphism by [Sta, Tag 0H3H, (3)].

Perfection of global quotient stacks. Global quotient stacks are compatible with perfections
in the following manner.

Proposition 2.5. Let G be a smooth algebraic group acting on a scheme X over k. Then

(X/G)perf = Xperf/Gperf

Proof. This is a special case of [Zhu17a, Lemma A.11].

Perfect Stein factorization. We first recall the classical Stein factorization [Sta, Tag 03GX].
Let f0 : X0 → S0 be a morphism. Setting S′0 = Spec

OS0

(f0,∗ OX), we can factor f0 as follows.

X0 S′0

S0

f ′
0

f0
π0

Assuming f0 : X0 → S0 is proper and S0 is locally noetherian, [Sta, Tag 03H0] shows that f ′0 is
proper with geometrically connected fibers, f ′0,∗ OX0

= OS′
0
, π0 is finite, S′0 is the normalization of

S0 in X0. In particular, for any geometric point s0 ∈ S0 it holds that π0(Xs0) = π0(S
′
s0) as finite

sets.
Assume nowX,S ∈ Schpfpk and let f : Y → S be a perfectly proper map. Let S′ = Spec

OS
(f∗ OX).

Lemma 2.6. The map S′ → S is an isomorphism if and only if all geometric fibers of f : X → S
are connected.

Proof. Without loss of generality, we may fix finite type models X0, Y0, f0 and S
′
0. Stein factorization

is compatible with base change [Sta, Tag 03GY].
Consider the Stein factorization X → S′ → S. For each geometric point s ∈ S, S′s is given by

finitely many points, which are in bijection with π0(Xs). By (vii), S′ → S is an isomorphism iff it
is a universal homeomorphism. But the latter happens iff each Ss = π0(Xs) has a single point.

Lemma 2.7. Consider a diagram of pfp perfect schemes

X T

S

g

f

π

Assume that X → S is perfectly proper and T → S is affine. Assume that for each geometric point
s of S, π0(g) : π0(Xs) → π0(Ts) is bijective. Then g : X → T induces an isomorphism on global
sections.

Proof. Let S′ = Spec
OS

(f∗ OX). As T is affine over S, the Stein factorization S′ naturally fits into

X → S′ → T → S.

We will prove that the corresponding map OT → OS′ of OS-algebras is an isomorphism, which yields
the result after pushforward. To this end, we can without loss of generality assume that S and hence
T is affine.

Since X → T is perfectly proper, by Lemma 2.6 it is enough to check that its geometric fibers
are connected. But this can be checked separately over each geometric point s ∈ S, where it boils
down to our assumption.
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3 Perfect equivariant K-theory

We now describe the main structural properties of equivariant K-theory of perfect schemes. Per-
fection changes K-theory in a controlled way by “inverting the Frobenius” and this forces good
descent properties. In fact, [Kra80a; KM21; AMM22; Cou23] have already studied such questions
for non-equivariant algebraic K-theory (see also [EK20] for motivic results). We take advantage of
their methods.

Let k = Fp. Unless stated otherwise, let G0 be a reductive k-group and G its perfection, which
is still an affine group scheme.

3.1 Effect of perfection on equivariant K-theory

Perfection changes K-theory by inverting the Frobenius.

Lemma 3.1. Let X0 ∈ Schqcqs,G0

k . Let G and X be the perfections. Then

KG(X) = colim
φ∗

KG0(X0).

Proof. Algebraic K-theory K(−) sends filtered inverse limits of qcqs schemes along affine maps to
colimits by [TT90, Proposition 3.20], giving the result for the non-equivariant K-theory of X =
limX0. The case of equivariant K-theory follows by the same argument, using [TT90, Theorem
3.20.1] first and only then passing to KG(−).

Taking exterior powers furnishes equivariant K-groups with λ-operations λj for j ∈ N0, turning⊕
i≥0K

G
i (X) (equipped with the zero multiplication on the positive part) into a λ-ring [Köc98;

KZ21] and we denote its Adams operations by ψj for j ∈ N0. These operations formally extend to
negative degrees by Bass delooping.

The following statement is well-known for K-theory of rings by [Kra80b; Kra80a; Hil81] or
[Cou23, Lemma 3.1.5]; the case of qcqs schemes follows by Zariski descent.5

Lemma 3.2. For each i ∈ Z, the action of Frobenius pullback φ∗ on KG
i (X0) agrees with the p-th

Adams operation ψp.

Proof. First, the functor φ∗ as well as the exterior powers Λj for j ∈ N0 can be regarded as objects
of Pol(Fp) in the sense of [HKT17]. This can be done by hand from [HKT17, Definition 8.1]: φ∗ is
the identity on objects, but on morphisms it raises the polynomial coordinates to p-th powers (it is
the actual Frobenius when we view the morphism spaces as schemes). For Λj , see [HKT17, Example
8.2]. Furthermore, φ∗ has degree p, Λj has degree j and all of these preserve the zero object.

We thus obtain the well-defined elements φ∗ and λj , j ∈ N0 in K0(Pol(Fp)0<∞) in the notation
of [HKT17, proof of Theorem 8.18]. The Adams operation ψj for j ∈ N0 is by definition a linear
combination of degree j monomials in λ’s. Furthermore, K0(Pol(Fp)0<∞) is the free λ-ring on one
variable Z[sj ]j∈N0 under sj 7→ λj by [HKT17, Theorem 8.10]. The elements φ∗ and ψp lie in the
graded degree p and are equal by the classical results [Kra80b, Corollary 3.7], [Kra80a, proof of
Proposition 5.4], [Hil81, Theorem 5.1].

Finally, the reasoning from [KZ21, proof of Theorem 5.1] applies. Under the construction
of the homomorphism [KZ21, (5.3)] for r = 0 we see that φ∗ realizes the correct operation on
End(VectG(X)). Since φ∗ and ψp agree on the level of K0(Pol(Fp)0<∞), the rest of the argument
in [KZ21, proof of Theorem 5.1] shows they agree on all higher equivariant K-groups. The case of
negative K-groups follows by naturality and Bass delooping.

In other words, equivariant K-theory of X is obtained from KG0(X0) by localizing ψp:

KG(X) = colim
ψp

KG0(X0).

The following is a special case of Lemma 3.2 in degree zero after k-linearization.

Lemma 3.3 (Commuting with perfections). Given X0 ∈ Schqcqs,G0

k , we have

KG
0 (X)k =

(
KG0

0 (X0)k

)
perf

5We thank Bernhard Köck for discussing the following equivariant extension.
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Proof. The left adjoint (−)k = (− ⊗
Z
Fp) commutes with colimits, so by Lemma 3.1 we can rewrite

the left-hand side as
colim
φ∗

(
KG0

0 (X0)k

)
.

We now claim that the maps in this colimit are given by taking p-th powers. If this is the case, the
colimit becomes

(
KG

0 (X)k
)
perf

by definition. It thus suffices to prove Claim 3.4.

Claim 3.4. The Frobenius pullback φ∗ on KG0
0 (X0)k is given by taking p-th powers c 7→ cp.

Proof of claim. Let c be the class of a G0-equivariant vector bundle E of rank n on X0. Then we
use Lemma 1.26: there exists a G0-equivariant morphism f : Y0 → X0 such that f∗ : KG0

0 (X0)k →
KG0

0 (Y0)k is injective and f∗[E] =
∑n
i [Li] for some G0-equivariant line bundles Li. To prove

φ∗[E] = [E]p, we can thus wlog assume that [E] is a sum of classes of equivariant line bundles.
First assume that c is a class of a G0-equivariant line bundle L. Then φ∗ L ∼= L⊗p with its

canonical G0-equivariant structure. Indeed, this can be seen explicitly on the level of transition
functions; see [BS17, Proposition 3.1] for the non-equivariant statement. Since we have base changed
to k = Fp, the same holds true for sums of classes of line bundles. Indeed,

φ∗ : (c1 + · · ·+ cn) 7→ (cp1 + · · ·+ cpn) = (c1 + · · ·+ cn)
p.

3.2 Kratzer’s p-divisibility of perfect higher K-theory

The interpretation of the Frobenius pullback on K-theory as the p-th Adams operation ψp implies
p-divisibility of higher K-theory of perfect schemes [Kra80a]. This is an important structural result,
which immediately generalizes to equivariant K-theory.

Lemma 3.5. Let X ∈ Schpfp,Gk . Then for all i ≥ 1, KG
i (X) is a Z[ 1p ]-module.

Proof. This is a direct generalization of the non-equivariant statement [Kra80a, Corollary 5.5 and
Example (1) below it]; see also [Wei13, §II.4 and §IV.5]. We review Kratzer’s proof.

Since the multiplication on
⊕

i≥0K
G
i (X) compatible with the λ-ring structure is trivial in positive

degrees, Lemma 3.2 and [Kra80a, Proposition 5.3.(i)] show that on KG
i (X) with i ≥ 1 we have

φ∗ = ψp = (−1)p−1 · p · λp. (3.2.1)

Since G\X is perfect, its Frobenius φ is an isomorphism, hence φ∗ is an isomorphism. By (3.2.1)
and additivity of λp, the multiplication by p needs to be isomorphism as well. Hence KG

i (X) is a
Z[ 1p ]-module for all i ≥ 1.

Lemma 3.5 in particular shows the following vanishing after k-linearization.

Corollary 3.6. Let X ∈ Schpfp,Gk , then

• KG
i (X, k) = 0 for i ≥ 2,

• KG
1 (X, k) = KG

0 (X)⊗1
Z k.

Proof. For all i ≥ 1, we know that KG
i (X) is a Z[ 1p ]-module by Lemma 3.5. The result follows by

the universal coefficient theorem KG
j (X, k) = (KG

j (X)⊗0
Z k)⊕ (KG

j−1(X)⊗1
Z k).

In fact, we don’t know examples where KG
1 (X, k) ̸= 0. In the non-equivariant setup, this is

always zero for weight reasons – see Observation 7.1.
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3.3 Perfect K-theory and G-theory agree

After perfection, K-theory agrees with G-theory.

Observation 3.7 (Perfect K-theory and G-theory). Let X ∈ Schpfp,Gk . Then there is a homotopy
equivalence of K-theory spectra

KG(X) ≃ GG(X).

Proof. By [BS17, Proposition 11.31, Remark 11.32], any complex in Db
QCoh(X) has finite Tor am-

plitude. By [TT90, Proposition 2.2.12], it follows that the notions of perfect complexes and pseudo-
coherent complexes agree on X. In particular, perfect complexes of globally finite Tor-amplitude and
pseudo-coherent complexes with globally bounded cohomology agree on X, hence [TT90, Definition
3.1] and [TT90, Definition 3.3] agree, proving the statements for trivial G. Also see [TT90, Theorem
3.21]. The same reasoning works with any G, adding “G-equivariant complex” everywhere in the
proof.

3.4 Equivariant perfect proper excision

Algebraic K-theory usually doesn’t enjoy proper excision, the best general supplement being the
pro-excision of [Mor16; KST18]. Forcing it on all Schqcqsk results in KH by [KST18, Theorem 6.3].

However, for pfp perfect schemes, K-theory satisfies proper excision [KM21, Proof of Theorem
4.3]. We conjecture that perfect proper excision works G-equivariantly, and we prove it in the
T -equivariant case in Theorem 3.11. This is one of the main computational tools for our results.

Setup 3.8. Let k = Fp. Let G0 be a reductive group over k and suppose we are given an abstract

blowup square of G0-equivariant schemes in Schfpk :

Y0 E0

X0 Z0

f0 f ′
0

(3.4.1)

Passing to perfections (by dropping the subscript “0”) we obtain a perfect abstract blowup square of
G-equivariant pfp perfect schemes over k:

Y E

X Z

f f ′ (3.4.2)

Let T0 = Gnm and T its perfection. Before we embark on proving T -equivariant proper excision,
we record the following useful lemma.

Lemma 3.9. Let k = Fp. Let T0 = Gnm be a split torus acting on X0 ∈ Schqcqsk . Let T and X be
the corresponding perfections. Then the stack T\X is flawless.

Proof. Let us first prove the case of quasi-projective X0 following [BFN10, Corollary 3.22]. First
note that BT = T\ pt is flawless. Clearly, it has affine diagonal T . Both dualizable (perfect) and
compact objects are given by finite-dimensional representations of the affine multiplicative group
scheme T . These also generate, so BT is flawless by say [BFN10, Proposition 3.9].

Since X0 is a quasi-projective k-variety, it is qcqs and possesses an ample family of line bundles;
the same follows for X by [BS17, Lemmas 3.4 and 3.6]. Now apply [BFN10, Proposition 3.21] to
the morphism T\X → T\pt of algebraic stacks as in the proof of [BFN10, Corollary 3.22].

More generally, this works for any qcqs X0. Since T0 is of multiplicative type, [Kha22, Theorem
1.40, Example 1.41.(ii)] show that the global quotient T0\X0 of a qcqs scheme X0 by T0 is flawless.
Since Perf(−), DQCoh(−) turn the Frobenius limit to a colimit and Ind(−) commutes with colimits
(being left adjoint), we deduce T\X is flawless as well.

Remark 3.10. If G0 = GLn with n ≥ 2 over k, then BG0 = G0\ pt is not flawless: its structure
sheaf is non-compact. This is the technical point that causes problems.
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We are now ready to prove the T -equivariant case.

Theorem 3.11. Consider a T -equivariant perfect abstract blowup square of pfp schemes from Setup
3.8. Then the following square of equivariant K-theory spectra is a homotopy fiber square.

KT (Y ) KT (E)

KT (X) KT (Z)

(3.4.3)

In particular, we get the long exact sequence:

· · · → KT
1 (E)→ KT

0 (X)→ KT
0 (Y )⊕KT

0 (Z)→ KT
0 (E)→ KT

−1(X)→ . . . (3.4.4)

The same conclusion holds if we replace K-theory by any localizing invariant E.

Proof. It is enough to verify the following three conditions:

(i) Ind(Perf(T\S)) = DQCoh(T\S) as∞-categories for the spaces S = X,Y, Z,E featuring above,

(ii) the induced square of ∞-categories given by applying DQCoh(−) is a pullback,

(iii) the functor Ri∗ : DQCoh(T\E)→ DQCoh(T\Y ) is fully faithful.

Assuming (i), (ii), (iii), we follow the reasoning in [KM21, Proof of Theorem 4.3]. To apply
[Tam18, Theorem 18], we need to check that the square given by PerfT (−) is excisive [Tam18, Defi-
nition 14]. By (i), the Ind-completion of this square agrees with the analogous square of DQCoh(−),
which satisfies the desired conditions by (ii) and (iii). We prove (i), (ii), (iii) below, concluding the
proof.

Proof of (i). This follows from Lemma 3.9.

Proof of (ii). We prove that the following square is a pullback of ∞-categories:

DQCoh(T\Y ) DQCoh(T\E)

DQCoh(T\X) DQCoh(T\Z)

(3.4.5)

For perfect schemes, this is proved in [BS17, Theorem 11.2.(1)]. To deduce the same result for
perfect global quotient stacks, note that perfection commutes with the formation of global quotients
by Proposition 2.5. Moreover, the diagram

T\X ← X ←← T ×X ←←
←
T × T ×X

←←
←← . . . (3.4.6)

allows to compute

DQCoh(T\X) = lim (DQCoh(X) →→ DQCoh(T ×X) →→
→
DQCoh(T × T ×X)

→→
→→ . . . ) (3.4.7)

by faithfully flat descent. More precisely, T\X ← X is a v-cover by [BS17, Definition 11.1 and
Example 2.3] so this also follows from [BS17, Theorem 11.2.(1)] and the definition of DQCoh(T\X).
Taking iterated self-products of this cover precisely returns (3.4.6).

Each of the terms in the limit (3.4.7) is a scheme. Taking (T × · · · × T × (−)) of the original
abstract blowup is an abstract blowup, so the corresponding square of ∞-categories after applying
DQCoh(−) is a pullback. Commuting limits, we deduce that the limit square (3.4.5) is a pullback as
well.

Proof of (iii). Since i : E → Y is a closed immersion of perfect schemes, Li∗Ri∗ = id on DQCoh(E)
by [BS17]. The equivariant structure carries through, so the same holds on DQCoh(T\X). Hence
Ri∗ is fully faithful as Hom(i∗(F), i∗(G)) = Hom(i∗i∗(F),G) = Hom(F,G).

21



Remark 3.12. Note that claims (ii) and (iii) hold without change for any perfectly reductive group
G instead of T . The technical issue in generalizing Theorem 3.11 from T to G is the failure of (i).
To apply [Tam18, Theorem 18], we would need to work with the square given by Ind(PerfG(−))
directly.

In general, we conjecture the following.

Conjecture 3.13. Perfect proper excision holds G-equivariantly.

Regarding the validity of this conjecture, we know:

(a) In the non-equivariant setup, it holds by [KM21, Proof of Theorem 4.3].

(b) For KT (−), we proved it in Theorem 3.11.

(c) For KHT (−), it holds by standard techniques (without perfection) by Proposition 1.36.

(d) For Borel-type equivariant K-theory KG
◁ (−), it holds by Kan-extension from (a).

3.5 Homotopy K-theory

Let us record some immediate properties of KHG(−) for perfect schemes.

Lemma 3.14.
KHG

i (X) = colim
φ∗

KHG0
i (X0).

Proof. Formally follows from Lemma 3.1 and the definition of KH(−) by commuting colimits.

Lemma 3.15. KHT (−) satisfies perfect proper excision.

Proof. Take the perfection of Proposition 1.36.

It is reasonable to expect the following.

Conjecture 3.16. The canonical map KG(X)→ KHG(X) is an equivalence.

Non-equivariantly, the map K(X) → KH(X) is actually an equivalence for any pfp perfect
scheme X by [AMM22, Proposition 5.1]. However, their argument needs proper excision as an
input.

Remark 3.17. If X is T -equivariant and perfectly smooth, then KT (X)→ KHT (X) is an equiv-
alence. By the above theorems, both sides satisfy descent on equivariant perfect abstract blowup
squares. We conclude that KT (X)→ KHT (X) is an equivalence whenever there exists a sequence
of equivariant abstract blowups reducing everything to perfectly smooth schemes. We will see this
happen in situations where explicit resolutions are known – see Theorem 5.7 and Theorem 7.7.

4 Perfect fixed-point schemes and trace maps

We now record how the fixed-point schemes and trace map from §1 play out in the perfect setup of
§2, §3. We discuss how to control whether the trace map is an isomorphism; we also provide some
direct geometric intuition.

4.1 Perfect fixed-point schemes

The fixed-point schemes and trace maps from §1 specialize to the perfect setup.
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Immediate observations. In Setup 2.1, we can apply the fixed-point scheme functor FixG
G
(−)

and its variants. Since perfect schemes are reduced (iii) and perfect derived schemes are classical
(iv), the natural maps (1.2.1) give isomorphisms

FixLG
G
(X) ∼= FixG

G
(X) ∼= FixredG

G
(X).

Since (−)perf commutes with fiber products (ii), it formally follows that

FixG(X) ∼= (FixG0(X0))perf .

Compatibility with stack quotients from Proposition 2.5 further shows

FixG
G
(X) ∼= FixG0

G0

(X0)perf .

and similarly for any restriction FixS(X). Passing through the limit along Frobenius, we in particular
note that our trace map

trX : KG
0 (X)k → H0(FixG

G
(X),O)

is given by the perfection of

trX0
: KG0

0 (X0)k → H0(FixG0
G0

(X0),O).

In particular, if trX0
is an isomorphism, the same is true for trX .

Factorization through KH. The degree zero trace map factors through homotopy K-theory by
Theorem 1.41. The same works in the perfect setup.

Lemma 4.1. The degree zero trace map canonically factors as

trX : KG
0 (X)k → KHG

0 (X)k → H0(FixG
G
(X),O).

Proof. Take perfection of Theorem 1.41.

Perfect tori. Let T be a perfect torus; then the situation simplifies further. Since global quotients
by T are flawless by Lemma 3.9, we have

HHT
i (X, k) = RΓi(FixT

T
(X),O). (4.1.1)

In particular,
HHT

i (X, k) = RΓi(FixT
T
(X),O) = 0, i ≥ 1. (4.1.2)

Since (−)T is exact on functions, we can commute it with taking cohomology to get

RΓi(FixT
T
(X),O) = Hi(FixT (X),O)T , i ∈ Z . (4.1.3)

In particular, this can be nonzero only in those degrees where coherent cohomology of FixT (X) is
nonzero. Such vanishing can be further checked fiberwise over T .

Lemma 4.2. Let i ∈ Z. Then RΓi(FixT (X),O) = 0 if and only if RΓi(Fixt(X),O) = 0 for all
geometric points t of T .

Proof. Considering the structure map FixT (X) → T with T affine, the result holds by perfect
base-change [BS17, Lemma 3.18].
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4.2 Equivariant points

Trace map for equivariant points. We discuss the perfect equivariant K-theory of points. This
closely relates to the representation theory of perfect reductive groups studied in [CW24]. In classical
terms, the Frobenius map corresponds to the multiplication by p on characters and consequently to
Frobenius twisting on Repk(G0).

Lemma 4.3. Let X0 = pt and T0 = Gnm. Then

tr : KT (pt, k)→ RΓ(FixT
T
(pt),O) (4.2.1)

is an isomorphism of spectra. Both sides are supported in homotopical degree 0 with value

k[t
± 1
p∞

1 , . . . , t
± 1
p∞

n ]. (4.2.2)

Proof. Since RepT is equivalent to the category of Z[ 1p ]
n-graded vector spaces, we can compute

KT (pt) from K(pt) by additivity. But the latter was computed by Quillen [Wei13, Corollary
IV.1.13]. In particular, the k-linear version KT (pt, k) is supported in degree 0 with value given
by the representation ring of T .

On the other hand, FixT
T
(pt) = T

T , so the right-hand side is RΓ(T,O)T . Since T is affine, this is

concentrated in degree 0 by Serre’s vanishing theorem. There it is simply given by H0(T,O) which
agrees with the above representation ring via the trace map.

Lemma 4.4. Let X = pt with the trivial G-action. Then the trace map gives an isomorphism

trX : KG
0 (pt, k)

∼=−→ H0(FixG
G
(pt),O)

∼=−→ H0(s,O).

Both sides are given by

k[t
± 1
p∞

1 , . . . , t
± 1
p∞

n ]W .

Proof. This is already the case before perfection for s0 and G0 by Example 1.33. Hence tr is also
isomorphism after perfecting.

For example if G0 = GLn, the above ring is explicitly given by k[c
1
p∞

1 , . . . , c
1
p∞

n−1, c
±

1
p∞

n ].

Remark 4.5. Note that KG
0 (pt, k) is supported in degree zero. On the other hand, whenever the

adjoint representation of G on its ring of functions has higher group cohomology, RΓ(FixG
G
(pt),O)

will be nontrivial also in negative homological degrees. On the other hand, H0(Fixs(pt),O) is
supported in degree 0 since s is an affine scheme.

4.3 Perfect projective bundles and traces

We now record how T -equivariantK-theory and fixed-point schemes behave under passage to perfect
projective bundles. The easiest argument works for any localizing invariant, but we also sketch simple
geometric arguments for fixed-point schemes valid in degree zero in §4.4.

Lemma 4.6. Let T act on X and E ∈ VectT (X) of rank r. Let Y0 = P(E) be the corresponding
projective space over X and Y its perfection. Let tr : KT (−, k) → HHT (−, k) be the trace map.
Then the following are equivalent:

(i) tr is isomorphism for X,

(ii) tr is isomorphism for Y .

Proof. By Proposition 1.25 we have natural identifications KT (P(E), k) =
∏r−1
i=0 K

T (X, k) and

HHT (P(E), k) =
∏r−1
i=0 HH

T (X, k). Hence tr is an isomorphism on X if and only if it is an iso-
morphism on P(E). Now, KT (Y, k) = colimφ∗ KT (P(E), k) and HHT (Y, k) = colimφ∗ HHT (P(E), k)
compatibly with these decompositions.
(i) =⇒ (ii). If tr is an isomorphism for X, it is an isomorphism for P(E) and hence for Y by
exactness of filtered colimits.
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(ii) =⇒ (i). Assume tr is an isomorphism for Y . SinceX is perfect andKT (X, k)→ HHT (X, k) is a
retract of KT (P(E), k)→ HHT (P(E), k) compatibly with the Frobenius, we know that KT (X, k)→
HHT (X, k) is a retract of KT (Y, k)→ HHT (Y, k). Hence tr is an isomorphism for X.

Lemma 4.7. Let T act on X and E ∈ VectT (X) of rank r. Let Y = FlagX(E, µ)perf be the
corresponding perfect flag variety of type µ over X. Let tr : KT (−, k) → HHT (−, k) be the trace
map. Then the following are equivalent:

(i) tr is isomorphism for X,

(ii) tr is isomorphism for Y .

Proof. Take perfection of (1.5.2). Applying Lemma 4.6 multiple times for the bundles appearing in
the factorizations of g and h, we deduce the result for f .

Example 4.8. Let E ∈ VectT (pt). Denote λ1, . . . , λm the set of distinct weights of T on E. Let
Y = P(E)perf . Then the trace map

KT (Y )
≃−→ RΓ(FixT

T
(Y ),O)

is an equivalence supported in degree zero. In degree zero, both sides are given by the ring(
k[t±11 , . . . , t±1n , x±1]/

(
m∏
i=1

(x− λi)

))
perf

.

Proof. For the point, the trace map is an isomorphism concentrated in degree zero. The same
follows for P(E) by the projective bundle formula for K(−, k) and HH(−, k). This isomorphism
is compatible with Frobenius pullback and taking the colimit along it is exact. Hence KT (Y ) →
HHT (Y, k) is still an isomorphism supported in degree zero.

The explicit presentation follows by the projective bundle formula for P(E) and by noting that
perfection discards nilpotence (so weight multiplicities don’t contribute).

Finally, let us record how this plays out for perfect stratified projective bundles.

Lemma 4.9. Let X ∈ Schpfp,Tk and F ∈ QCohT (X) which comes as pullback from a coherent sheaf

F0 ∈ CohT0(X0) on some finitely presented model X0 ∈ Schfp,T0

k . Let Y = GrassX(F, 1)perf be the
associated perfect relative Grassmannian. Then KT (X) is a natural direct summand of KT (Y );
similarly for other localizing invariants and natural maps between them.

Proof. We can write F0 as the zeroeth homology H0 of a T0-equivariant perfect complex on X0 of
Tor-amplitude [1, 0]. Pulling this back toX presents F onX asH0 of a T -equivariant perfect complex
E of Tor-amplitude [1, 0]. Now we can form the derived enhancement GrassX(E, 1) of GrassX(F, 1) of
[Jia22b; Jia22a] and apply Recollection 1.24 and Proposition 1.31. This remains true after perfection
by exactness of the Frobenius colimit. Since perfection discards the derived structure, the final
statement indeed features the classical Y = GrassX(F, 1)perf = GrassX(E, 1)perf .

4.4 Global functions on perfect fixed-point schemes

We record a few more auxiliary results on global functions on perfect fixed-point schemes. We
hope this gives a clear geometric intuition about their behaviour, independent of the categorical
construction of Hochschild homology above. Let G be the perfection of GLn (or alternatively any
perfect, split, semisimple, simply connected group).

Perfect proper excision for functions on fixed-point schemes. Consider an abstract blowup
square (3.4.2). Applying the functors FixG

G
(−) we get the pullback square (4.4.1) on the right.

FixG
G
(Y ) FixG

G
(E)

FixG
G
(X) FixG

G
(Z)

(4.4.1)

The corresponding proper excision can be seen geometrically as follows.
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Lemma 4.10. Assume FixG
G
(Y )→ FixG

G
(X) is surjective. Then there is a distinguished triangle

RΓ(FixG
G
(X),O)→ RΓ(FixG

G
(Y ),O)⊕ RΓ(FixG

G
(Z),O)→ RΓ(FixG

G
(E),O).

and similarly for the versions with FixS(−). In particular, there is an exact sequence

0→ H0(FixG
G
(X),O)→ H0(FixG

G
(Y ),O)⊕H0(FixG

G
(Z),O)→ H0(FixG

G
(E),O)→ · · ·

Proof. We first treat the fixed-point scheme FixG(−). Since perfections are compatible with open
and closed immersions by Proposition 1.2, the square (4.4.1) is still an abstract blowup by our
surjectivity assumption. The induced sequence is exact by (iv). To pass to FixG

G
(−), apply the right

derived functor of (−)G. The version for FixS(−) works by the same reasoning.

A fiberwise criterion. We record the following simple fiberwise criterion for checking whether
the trace map is an isomorphism in degree zero. Let s ↪→ G be the perfect Steinberg section. For
X = pt it holds that Fixs(pt) ∼= s and the trace map induces canonical isomorphisms

FixT (pt)
∼=−→ SpecKT

0 (pt)k, and Fixs(pt)
∼=−→ SpecKG

0 (pt)k.

The degree zero trace map can be understood fiberwise over the equivariant base by the following
simple criterion.

Lemma 4.11. Let X ∈ Perfpfp,Gk and assume that for each closed geometric point s ∈ s, the trace
map

Fixs(X) SpecKG
0 (X)k

s

trX

induces a bijection on π0 of the fibers over s. Then KG
0 (X)k → H0(Fixs(X),O) is an isomorphism.

Proof. Follows from Lemma 2.7.

Geometric viewpoint on the projective bundle formula. The degree zero part of Lemma
4.6 for G can be also seen directly from the geometry of the fixed-point scheme as follows. Let
X ∈ Schpfp,Gk , E ∈ VectG(X) and Y = P(E)perf . We claim that

tr : KG
0 (X, k)→ H0(Fixs(X),O) isomorphism ⇐⇒ tr : KG

0 (Y, k)→ H0(Fixs(Y ),O) isomorphism.

Indeed, consider the diagram

Fixs(Y ) SpecKG
0 (Y, k)

Fixs(X) SpecKG
0 (X, k)

tr

tr

(4.4.2)

Let (g, x) : pt → FixG(X) be a geometric point and (g, x)′ : pt → FixG(X) → SpecKG
0 (X, k) the

corresponding geometric point of SpecKG
0 (X, k). We restrict attention to the fiber FixG(Y )(g,x) =

Fixg(Yx) of FixG(Y ) over (g, x), whose points are given by the 1-dimensional subspaces of Ex fixed
by g. Hence π0(FixG(Y )(g,x)) identifies with the set Eigg(Ex) of distinct eigenvalues of g on Ex.

By the projective bundle formula for equivariant K-theory, we also have:

Spec(KG
0 (Y, k))(g,x)′ = Spec

(
k[ξ] /

(
r∑
i=0

(−1)i · trg[∧i Ex] · ξr−i
))

perf

(4.4.3)

Factoring this polynomial, it follows that π0(Spec(K
G
0 (Y, k))(g,x)′) is also given by the set Eigg(Ex)

of distinct eigenvalues of g on Ex. The restricted trace map is a bijection

tr : π0(Fixs(Y )(g,x))
∼=−→ π0(Spec(K

G
0 (Y, k))(g,x)′) (4.4.4)

given by identity on Eigg(Ex) under the above identifications. We then conclude by Lemma 4.11.
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5 Trace map for perfect affine Grassmannians

Our main examples of interest are the affine Grassmannians and affine Schubert varieties, in both
classical and perfect setups. As a proof of concept, we prove our main result for T -equivariant
K-theory of affine Schubert varieties X≤µ in the perfect affine Grassmannian Gr for GLn.

We recall affine Grassmannians and their perfect versions in §5.1. We prove our conjecture for
the GL2 affine Grassmannian in §5.2 using equivariant proper excision from Theorem 3.11 and usual
projective bundle formula; this allows for explicit computations. We then in §5.3 use the semi-
orthogonal decomposition for derived projective bundles [Jia23] to prove the general case of the
GLn affine Grassmannian.

5.1 Affine Grassmannians and their perfections

We make a brief overview of affine Grassmannians and their perfect versions. This is a standard
material; up to perfection, we follow the excellent introduction [Zhu17a]. For perfection and the
Witt-vector affine Grassmannian, see [Zhu17b; BS17].

Notation. Let k be a perfect field of positive characteristic; we take k = Fp. As above, we denote

Schpfpk the category of perfectly finitely presented perfect schemes over k. Consider the reductive
group G0 = GLn over k and let G be its perfection. Let T0 be its split diagonal torus and T
its perfection. Let X∗ := X∗(T0) be the cocharacter lattice of T0; we denote by X+

∗ := X+
∗ (T0)

the monoid of dominant cocharacters (with respect to the upper-triangular Borel subgroup). If
µ• = (µ1, µ2, . . . , µr) is a sequence of cocharacters, we denote by µ = |µ•| = µ1 + µ2 + · · · + µr its
sum. If µ = µ1 + µ2 + · · ·+ µr with all µi minuscule, we put lg(µ) := r and call it the length of µ.

Affine Grassmannian and its perfection. We mostly follow the notation from [Zhu17a]. By
base change, G0 gives a reductive group over k((t)) with an integral model over kJtK. Associated to
these we have the loop groups with functors of points sending a test algebra R ∈ Algk to

LG0 : R 7→ G0(R((t)))), L+G0 : R 7→ G0(RJtK), LhG0 : R 7→ G0(RJtK/(th+1)).

We call these respectively loop group LG, positive loop group L+G and truncated loop groups LhG.
The quotient

(Gr)0 = LG0/L
+G0

gives a well-defined ind-scheme called the affine Grassmannian of G0. In the case of GLn, its functor
of points on k-algebras is given by

R 7→ {Λ ⊆ R((t))⊕n | Λ full RJtK-lattice}.

We denote LG, L+G, LhG, Gr the perfections of these objects. We call Gr the (equal charac-
teristic) perfect affine Grassmannian; it is the quotient

Gr = LG/L+G.

From now on, everything is implicitly perfect. For the sake of readability, we omit this adjective.
Since the same results hold before perfection, there is no risk of confusion.

Affine Schubert cells. For µ ∈ X∗, we let tµ be the the image of the point t ∈ LGm(k) under
Lµ : LGm(k) → LG(k). The map µ 7→ tµ gives a group homomorphism X∗ → LG(k). The L+G
(double) cosets induce a scheme theoretic stratification

LG(k) =
⊔

µ∈X+
∗

L+G(k) · tµ · L+G(k) and Gr(k) =
⊔

µ∈X+
∗

L+G(k) · tµ

of LG resp. Gr into locally closed pieces LGµ resp. Grµ labelled by µ ∈ X+
∗ and called the affine

Schubert cells.
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Explicitly, Grµ is an affine bundle of dimension (2ρ, µ) over the partial flag variety G/Pµ, where
Pµ is the parabolic subgroup associated to µ. The structure map is given by setting the formal
parameter t equal to zero as follows:

LGµ L+G · tµ L+G G

Grµ Grµ Grµ G/Pµ

(g 7→g·t−µ) (t7→0)

(5.1.1)

The vertical maps in (5.1.1) are right torsors for the following groups and comparison maps between
them:

L+G L+G ∩ (t−µ · L+G · tµ) (tµ · L+G · t−µ) ∩ L+G Pµ
g 7→tµgt−µ

t7→0

The map Grµ → G/Pµ is an isomorphism if and only if µ is minuscule.

Affine Schubert varieties. The closures X≤µ = Gr≤µ of the affine Schubert cells Grµ respect
this stratification: there is a set-theoretic decomposition Gr≤µ =

⊔
λ≤µGrλ. These Gr≤µ are called

the affine Schubert varieties. In particular, they carry an action of L+G.
In contrast to the ind-scheme Gr, affine Schubert varieties are of finite type. The singular locus

of Gr≤µ is precisely Gr≤µ \Grµ =
⊔
λ<µGrλ. In particular, Gr≤µ is smooth if and only if µ is

minimal in the dominance order.
The singularities of Gr≤µ are rational by [Zhu17a, Theorem 2.2.21] and Observation 2.3.
In terms of the moduli description, Gr≤µ is the closed subfunctor of Gr parametrizing those Λ

which are in relative position ≤ µ with respect to the standard lattice Λ0 = kJtK⊕n.

Affine Demazure resolutions. For any d-tuple µ• = (µ1, . . . , µd) of dominant cocharacters
µ1, . . . . . . , µn ∈ X+

∗ , the associated affine Demazure variety is the iterated twisted product

Y≤µ• = Gr≤µ• := LG≤µ1

L+G
× LG≤µ2

L+G
× . . .

L+G
× LG≤µn

L+G
× pt

= Gr≤µ1

∼
×Gr≤µ2

∼
× . . .

∼
×Gr≤µn

.

with respect to the L+G–torsors LG≤µi
→ Gr≤µi

for i = 1, 2, . . . , n− 1.
Note that Gr≤µ• carries a natural action of L≤µ1

G induced from the left translation on the first
factor. In particular, it has an action of L+G. The (n− 1)-fold multiplication

LG≤µ1 × LG≤µ2 × · · · × LG≤µn

m−→ LG≤|µ•|

factors through the affine Demazure variety, giving rise to the convolution map

Gr≤µ•
m−→ Gr≤|µ•| . (5.1.2)

This is a proper surjective L+G-equivariant map. It restricts to an an isomorphism over the open
cell Gr|µ•| ↪→ Gr≤|µ•| in the target.

In terms of the moduli description, Gr≤µ• parametrizes chains of lattices Λd, . . . ,Λ1,Λ0 with Λi
and Λi−1 in relative position µi and Λ0 the standard lattice. The convolution map sends it to Λd.

In particular, assume all µi are minuscule. Since each Gr≤µi = G/Pµi is smooth, Gr≤µ• is
smooth as well. In fact, it is an iterated Grassmannian bundle, coming from a sequence of equivariant
algebraic vector bundles, which we now describe.

Affine Demazure resolutions as Grassmannian bundles. Given µ ∈ X+
• , the variety X≤µ :=

Gr≤µ carries a natural vector bundle E = E≤µ defined as follows. We write modfl(RJtK) for the
abelian category of finite length RJtK-modules. Denoting ℓ = lg(µ), any Λ ∈ X≤µ(R) lies inside
t−ℓΛ0 and we define

E : X≤µ(R)→ modfl(RJtK)

Λ 7→ t−ℓΛ0/Λ.
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This assembles into a L+G-equivariant vector bundle on X≤µ, carrying a nilpotent operator t : E→
E. Consider now

E• := [E
t−→ E] and F := H0(E•) = coker(E

t−→ E).

Then E• is a perfect complex of Tor amplitude [1, 0] resolving the coherent sheaf F. The affine
Schubert stratification of X≤µ is a flattening stratification for F, meaning that the restrictions of F
to affine Schubert cells are vector bundles.

The affine Demazure resolution is given inductively as follows. Write µ• = (µ1, λ) with µ1

minuscule. Then the convolution map (5.1.2) is given by the structure map

Y≤µ• = GrassX≤µ
(F, µ1)

f−→ X≤µ.

The left-hand term of the tautological exact sequence

0→ E′ → m∗ E→ E′′ → 0

on Y≤µ• is an equivariant coherent sheaf on Y≤µ• with an action of t and one can continue inductively.
On the other hand, Y≤µ• is an honest Grassmannian bundle over X≤λ. For this, consider the

vector bundle G = G≤λ on X≤λ given by

G : X≤λ(R)→ mod(R) ↪→ modfl(RJtK)

Λ 7→ t−1Λ/Λ.

This is a L+G-equivariant vector bundle on X≤λ, carrying the zero action of t. We then have

Y≤µ• = GrassX≤λ
(G, µ1).

Altogether, we obtain the convolution diagram

Y≤µ• X≤λ

X≤µ

g

f (5.1.3)

Witt-vector affine Grassmannian. The analogs of the above spaces for mixed characteristic
groups were constructed in [Zhu17b; BS17]. These objects are defined only in the perfect setup.

Given a non-archimedean local field of mixed characteristic K with ring of integers O and residue
field k, base change of G0 gives a reductive group over K with an integral model over O. Let W(−)
be the functor of ramified Witt vectors on perfect k-algebras, with a uniformizer ϖ. Associated to
this we have the p-adic loop groups with functors of points sending a test algebra R ∈ Algperfk to

LG0 : R 7→ G0(W(R)[ 1ϖ ]), L+G0 : R 7→ G0(W(R)), LhG0 : R 7→ G0(Wh(R)).

The quotient
Gr = LG/L+G

is a well-defined perfect ind-scheme called the Witt-vector affine Grassmannian. In the case of GLn,
its functor of points on perfect k-algebras is given by

R 7→ {Λ ⊆W(R)[ 1ϖ ]⊕n | Λ full W(R)-lattice}.

The discussion of the above paragraphs can be repeated in the Witt vector case upon replacing RJtK
by W(R) and t by ϖ; see [Zhu17b; BS17]. The resulting affine Schubert varieties are rational by
[BS17, Remark 8.5].

We still have the sheaf

E : X≤µ(R)→ modfl(W(R))

Λ 7→ ϖ−ℓΛ0/Λ.

Strictly speaking, this is not a vector bundle on X≤µ since its fibers are not Fp-modules. However,

H0(E•) = coker(E
ϖ−→ E) is a quasicoherent sheaf on X≤µ and G : Λ 7→ ϖ−1Λ/Λ is a vector bundle,

making the rest of the discussion preceding (5.1.3) valid; see [BS17, §7-8].
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5.2 Trace map for perfect GL2 affine Grassmannian

To convey the main idea, we now prove Theorem 0.1 for the perfect GL2 affine Grassmannian.
This only needs equivariant proper excision and the projective bundle formula. Furthermore, proper
excision gives a constructive recipe for computing the ring KT (X≤µ) integrally.

Let Gr be either the perfect affine Grassmannian or the Witt-vector affine Grassmannian.

Theorem 5.1. Let G0 = GL2 with its diagonal torus T0 over k. Then for each affine Schubert
variety X≤µ of Gr, the trace

tr : KT (X≤µ, k)→ RΓ(FixT
T
(X≤µ),O) (5.2.1)

is an equivalence.

Proof. Note that X+
• = N≥0[ω1, ω2] is the free commutative monoid on the set of fundamental

coweights. Each affine Schubert variety is isomorphic to one of the form X≤kω1
. Indeed, there is an

equivariant isomorphism X≤(aω1+bω2)
∼= X≤aω1

. We prove the result by induction on a.
The base cases of the induction are µ = 0 · ω1 and µ = 1 · ω1. In the first case, X≤0 = pt so

the trace map is indeed an isomorphism supported in homological degree zero by Lemma 4.3. In
the second case, X≤ω1 is the perfection of P1 with the natural T -action, so the trace map is also an
isomorphism supported in homological degree zero by Example 4.8.

Let a ≥ 1 and assume that we know the result for all jω1 with j ≤ a; we prove it for µ := (a+1)ω1.
Denote µ′ := (a − 1)ω1 + ω2 the maximal element strictly below µ in the dominance order. Let
λ := aω1. If a ≥ 2, denote further λ′ := (a − 2) · ω1 + ω2 the maximal element strictly below λ (if
a = 1, then λ is minimal).

Put µ• := (λ, ω1) and consider (5.1.3). This gives the affine Demazure variety Y≤µ• with a map
g : Y≤µ• → X≤λ. We also have the affine Demazure morphism f : Y≤µ• → X≤µ which leads to an
abstract blowup square

Y≤µ• E

X≤µ X≤µ′

f (5.2.2)

• By construction, Y≤µ• is a perfect P1-bundle over X≤λ via g. Hence the claim holds for Y≤µ•

by induction and Lemma 4.6.

• Since X≤µ′ ∼= X≤(a−1)ω1
, we know the claim by induction.

• The preimage E of X≤µ′ under f looks as follows in terms of g. Over the open cell Xλ of X≤λ
it is given by a section of g. Over the closed complement X≤λ′ it is given by the whole perfect
P1-bundle (if a = 1, X≤λ′ is empty). In other words, it fits into an abstract blowup square:

E E′

X≤λ X≤λ′

h h′ (5.2.3)

Consider the homotopy fiber sequences associated to (5.2.3) via Theorem 3.11.

KT (X≤λ, k) KT (E, k)⊕KT (X≤λ′ , k) KT (E′, k)

HHT (X≤λ, k) HHT (E, k)⊕HHT (X≤λ′ , k) HHT (E′, k)

Here, we know the claim forX≤λ andX≤λ′ by induction. We also know the claim by Lemma 4.6
for E′ because h′ : E′ → X≤λ′ is a perfect P1-bundle. By the long exact sequence of homotopy
groups and the 5-lemma, we deduce that tr : KT (E, k)→ HHT (E, k) is an isomorphism.

30



Now consider the following fiber sequences coming from (5.2.2) via Theorem 3.11.

KT (X≤µ, k) KT (Y≤µ• , k)⊕KT (X≤µ′ , k) KT (E, k)

HHT (X≤µ, k) HHT (Y≤µ• , k)⊕HHT (X≤µ′ , k) HHT (E, k)

Combining the previous three items and the associated long exact sequences, we deduce by 5-lemma
that tr : KT (X≤µ, k)→ HHT (X≤µ, k) is an isomorphism.

Corollary 5.2. Taking the zeroeth homotopy group in (5.2.1) returns the natural isomorphism

tr : KT
0 (X, k)

∼= H0(FixT
T
(X),O) ∼= H0(FixT (X),O). (5.2.4)

The above also shows that both sides of (5.2.1) are supported in homological degrees ≤ 0. We
will later see that they are actually supported in the homological degree zero only.

Corollary 5.3. Both KT (X≤µ, k) and RΓ(FixT
T
(X≤µ),O) are supported in homological degrees ≤ 0.

In particular, KT
0 (X≤µ) has no p-torsion.

Proof. Note that (−)T on functions is exact, so the right-hand side of (5.2.1) is supported in homo-
logical degrees ≤ 0. Since tr is an isomorphism, the same is true for the left-hand side. The final
line follows from KT

1 (X, k) = KT
0 (X)⊗1

Zk.

Theorem 5.4. Integrally, it holds that

KT (X≤µ) ≃ KHT (X≤µ).

Proof. The proof of Theorem 5.1 in particular shows how to describe KT (X≤µ) from KT (−) of
smooth T -equivariant schemes via homotopy fiber sequences associated to perfect abstract blowups.
The same sequences exist for KHT (−) by Proposition 3.15, and there is a natural comparison map
KT (−) → KHT (−). This is an isomorphism on smooth T -equivariant pfp schemes, so the result
follows by induction.

5.3 Trace map for perfect GLn affine Grassmannian

In general, it is demanding to control the K-theory of the exceptional fibers by proper excision
only. The extra ingredient is the following: we also get split homotopy fiber sequences associated
to stratified Grassmannian bundles Y → X by the semi-orthogonal decomposition of [Jia23]. With
this extra knowledge, we prove the general case of Theorem 0.1. Let Gr be either the perfect affine
Grassmannian or the Witt-vector affine Grassmannian for GLn.

Theorem 5.5. Let µ ∈ X+
• and X≤µ the corresponding perfect affine Schubert variety in Gr. Then

tr : KT (X≤µ, k)→ RΓ(FixT
T
(X≤µ),O) (5.3.1)

is an equivalence supported in homological degree zero.

Proof. We prove the theorem by induction on µ ∈ X+
• with respect to lg(µ). If µ = 0, then X≤µ = pt

and the statement is clear by Lemma 4.3.
Assume now µ ̸= 0 decomposes into a sum of fundamental coweights µ = µ1 + · · · + µℓ with

ℓ ≥ 1. Say µ1 = ωj is the j-th fundamental weight. Let λ = µ− µ1 and put µ• = (µ1, λ). Consider
the following diagram building on (5.1.3):

Ỹ≤µ• Y≤µ• X≤λ

X≤µ

h g

f (5.3.2)

Here Ỹ≤µ• parametrizes the data of Y≤µ• together with a full flag in the rank j quotient corresponding
to µ1. The map h is thus a perfected full flag variety bundle (for the group GLj).
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Now, the map fh is an iterated perfected relative Grass(−, 1)-bundle. Indeed, having F =
H0(E → E) on X≤µ, first take GrassX≤µ

(F, 1). The tautological exact sequence on GrassX≤µ
(F, 1)

then reads as
0→ F′ → f∗ F → F → 0

and we can continue the process with F′. After j steps we arrive at Ỹ≤µ• . Note that although these
Grass(−, 1)-bundles may carry a nontrivial derived structure, their perfections are classical by (vi).

We already know the statement of the theorem holds for X≤λ by induction. By stability on
perfected partial flag variety bundles from Lemma 4.7, we deduce it for Y≤µ• and subsequently for

Ỹ≤µ• .
Applying Lemma 4.9 to fh, the trace map KT (X≤µ, k) → HHT (X≤µ, k) is a direct summand

of the trace map KT (Ỹ≤µ• , k)→ HHT (Ỹ≤µ• , k), which is an isomorphism supported in homological
degree zero by the above. We deduce the same for the former, completing the inductive step.

Remark 5.6. Note that at least in the equal characteristic case, E• gives a preferred presentation
of F with Tor-amplitude [1, 0], simplifying the application of Lemma 4.9.

Theorem 5.7. Integrally, the natural map is an equivalence

KT (X≤µ) ≃ KHT (X≤µ).

Proof. BothK(−) andKH(−) are localizing invariants and there is a natural mapK(−)→ KH(−).
Note that KT (−) and KHT (−) agree on smooth T -equivariant schemes (in particular on a point).
The inductive argument from the proof of Theorem 5.5 thus applies.

6 Sample computations in affine Grassmannians

The proof of Theorem 5.1 is constructive: it yields an inductive way to compute the ring KT
0 (X≤µ)

integrally in terms of generators and relations. We provide a few concrete instances of this compu-
tation in practice.

Example 6.1. Assume k has char k ≥ 3. Let G0 = GL2 and T0 its diagonal torus. Let µ = 2ω1

and X = Gr≤µ. We get

KT
0 (X, k)

∼=
(
k[t±11 , t±12 , e1]/ ((e1 − 2t1)(e1 − 2t2)(e1 − (t1 + t2)))

)
perf

.

Proof. Let µ• = (ω1, ω1) and Y = Gr≤µ• . The associated abstract blowup square induces a long
exact sequence in K-theory, which splits into short exact sequences by the description of the K-
theory of projective bundles used for Y → E. We thus get a Mayer–Vietoris square

KT
0 (Y, k) KT

0 (E, k)

KT
0 (X, k) KT

0 (pt, k)

and we can compute KT
0 (X, k) from the associated short exact sequence as a kernel. In particular

KT
0 (X, k) = KT

0 (X)⊗Zk. We can explicitly write:

KT
0 (pt, k)

∼=
(
k[t±11 , t±12 ]

)
perf

KT
0 (E, k)

∼=
(
k[t±11 , t±12 , ξ]/((ξ − t1)(ξ − t2))

)
perf

KT
0 (Y, k)

∼=
(
k[t±11 , t±12 , ξ0, ξ1]/

(
(ξ0−t1)(ξ0−t2)
(ξ1−t1)(ξ1−t2)

))
perf

The map KT
0 (Y, k)→ KT

0 (E, k) is given by ξ0 7→ ξ, ξ1 7→ (−ξ + t1 + t2). The above Mayer–Vietoris
short exact sequence then shows KT

0 (X, k) ↪→ KT
0 (Y, k) is the subring generated by

e1 := ξ0 + ξ1

e2 := ξ0ξ1
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The computation of this kernel can be done before perfection by exactness of filtered colimits.
Explicitly, KT

0 (X, k) is given by the rank three flat KT
0 (pt, k)-algebra

KT
0 (X, k)

∼=
(
k[t±11 , t±12 , e1, e2] /

(
e21−(t1+t2)e1−2e2+2t1t2

e22−(t1+t2)
2e2+t1t2(t1+t2)e1−t21t

2
2

e1e2−2(t1+t2)e2+t1t2e1

))
perf

∼=
(
k[t±11 , t±12 , e1] /

(
e31 − 3(t1 + t2)e

2
1 + (4t1t2 + 2(t1 + t2)

2)e1 − 4(t1 + t2)t1t2
))

perf

∼=
(
k[t±11 , t±12 , e1] / ((e1 − 2t1)(e1 − 2t2)(e1 − (t1 + t2)))

)
perf

.

The first line holds by checking these relations for e1 and e2; these are all of them by counting
ranks in the Mayer–Vietoris sequence. To get the second line, we get rid of e2 from the first relation
(this is the only point where we use char k ̸= 2). Substituting for e2 into the third relation, we
obtain the desired cubic relation for e1. Substituting for e2 into the second relation and using the
above cubic relation for e1, the second relation becomes tautological. The passage to the third line
is clear.

Example 6.2. Let k be of char k ̸= 3. Let G0 = GL3 and T0 its diagonal torus. Let µ = ω2 + ω1

and X ∼= Gr≤µ. We get

KT
0 (X, k)

∼=

(
k[t±11 , t±12 , t±13 ,m1,m2] /

(
3m5

1+(15c2−5c21)m
3
1+(2c31−9c1c2+9c3)m2+(14c22−4c

2
1c2−6c1c3)m1

3m2
1m2−2c1m3

1+(3c2−c21)m2+(c1c2−9c3)m1

3m2
2+m

4
1−4c1m1m2+4c2m

2
1

))
perf

where we denote elementary symmetric polynomials in t1, t2, t3 by

c1 := t1 + t2 + t3, c2 := t1t2 + t2t3 + t1t3, c3 := t1t2t3.

This is rank 7 finite free algebra over KT
0 (pt, k).

Proof. Let µ• = (ω2, ω1) and Y = Gr≤µ• . The associated abstract blowup square has Y a perfected
P2-bundle over P2, Z = pt and E perfect P2 as a section. One immediately gets

KT
0 (Y, k)

∼=
(
k[t±11 , t±12 , t±13 , χ0, χ1] /

(
(χ0−t1)(χ0−t2)(χ0−t3)
(χ1−t1)(χ1−t2)(χ1−t3)

))
perf

KT
0 (Z, k)

∼= k[t±11 , t±12 , t±13 ]perf

KT
0 (E, k)

∼=
(
k[t±11 , t±12 , t±13 , χ] / ((χ− t1)(χ− t2)(χ− t3))

)
perf

with the map KT
0 (Y, k) → KT

0 (E, k) given by χ0 7→ χ, χ1 7→ χ. Since the induced long exact
sequence in K-theory splits into short exact sequences (by the shape of Y and E), we can explicitly
compute KT

0 (X, k) from the short exact sequence as a kernel. Moreover, since the remaining terms
are projective KT

0 (pt, k)-modules of ranks 9, 1, 3, it follows that KT
0 (X, k) is a projective KT

0 (pt, k)-
module of rank 7. The elements

m1 := χ0 − χ1

m2 := χ2
0 − χ2

1

are visibly in this kernel. A lengthy computation shows that they satisfy precisely the above ideal of
relations insideKT

0 (Y, k). For rank reasons, it follows that they generateKT
0 (X, k) as an algebra.

Remark 6.3. The above computations work the same for KHT (−) and KHG(−) in any charac-
teristic (without perfection). In particular, this applies to characteristic zero.

Remark 6.4. The presentations from Examples 6.1 and 6.2 can be compared to their cohomological
analogs studied in [Hau24] by different methods: see [Hau24, (4.6)] and [Hau24, (4.10)].

We want to briefly mention how the trace map looks for affine Demazure resolutions, as the
above rings for X≤µ embed into those for Y≤µ• .
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Example 6.5. Let µ• = (µ1, . . . , µd) be a sequence of fundamental coweights and Y≤µ• the corre-
sponding affine Demazure resolution. Then

tr : KT (Y≤µ• , k)
≃−→ RΓ(FixT

T
(Y≤µ•),O)

is an equivalence supported in homological degree zero. Explicitly,

KT
0 (Y≤µ•) =K

T
0 (G/Pµ1

) ⊗
KT

0 (pt)
KT

0 (G/Pµ2
) ⊗
KT

0 (pt)
. . . ⊗

KT
0 (pt)

KT
0 (G/Pµk

)

Proof. This follows from Lemma 4.3 by iterating Lemma 4.7.
Alternatively, the trace map in degree zero for affine Demazure resolutions can be understood

directly from the twisted product description by Lemma 1.9 and Lemma 4.11; these arguments work
G-equivariantly.

7 More examples

We now record a few more examples to convey a feeling about perfect trace maps. These examples
are interesting and relate to other results in the literature. However, since they are rather unrelated
to our original motivation, we confine them to this section.

7.1 Trivial group

If G = e is the trivial group over k and X is perfectly proper, the trace map in degree zero is the
following isomorphism encoding simple topological information.

Observation 7.1. Assume X is perfectly proper over k. Then the trace map is an isomorphism

trX : K0(X)k
∼=−→ H0(Fixe(X),O).

Both sides agree with the free k-module k[π0(X)] on the set of connected components of X. For
i ≥ 1, both Ki(X, k) and Hi(Fixe(X),O) are zero.

Proof. LetX0 be a proper model ofX. The reduced global sectionsH0(X0,O
red) have to be constant

on each connected component by properness. Since X0 is quasi-compact, there are finitely many
connected components, so H0(X0,O

red) = k[π0(X0)]. Then

H0(Fixe(X),O) = H0(X,O) = colim
φ∗

H0(X0,O) = colim
φ∗

H0(X0,O
red) = k[π0(X0)] = k[π0(X)]

because k and hence k[π0(X0)] is already perfect.

Concerning K-theory, it holds that K0(X) = K̃0(X) ⊕ H0(X,Z) with K̃0(X) being a Z[ 1p ]-
module. Indeed, [Cou23, Theorem 3.1.2 and Remark 3.1.3] show that this is the case on affines,
where it follows from the finite γ-filtration [Wei13, Theorem II.4.6]. Moreover, all Ki(X) with i > 0
are also Z[ 1p ]-modules. The general case of non-affine pfp X now follows by the Zariski descent

spectral sequence [TT90, Proposition 8.3, (8.3.2)]. See also [Wei13, Proposition 8.8.4].

Tensoring K0(X) with k, the first term K̃0(X) vanishes, while the second becomes k[π0(X0)].
Since the trace map is induced by locally taking the rank, it induces the identity under the above
identifications.

For the final statement, (K0(X) ⊗1
Z k)

∼= (K̃0(X) ⊗1
Z k) ⊕ (H0(X,Z) ⊗1

Z k)
∼= 0 together with

Corollary 3.6 shows that Ki(X, k) vanishes for all i ≥ 1. The vanishing of Hi(Fixe(X),O) for i ≥ 1
is clear.

Note 7.2. In the non-equivariant case, the perfected trace map is an isomorphism in homological
degrees ≥ 0 by Observation 7.1. However, this may still fail in negative degrees – the following
example is based on [BS17, Remark 11.7].

Example 7.3. Let Y0 be a smooth ordinary elliptic curve over k. Take Y to be its perfection. Then
K−1(Y, k) = 0 by smoothness, but H−1(Y,O) ̸= 0 by ordinarity. In particular, the trace map is not
an isomorphism in degree −1.
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7.2 Nodal curve and negative K-theory

Note 7.4. Algebraic K-theory of perfect schemes can be non-connective: the negative K-groups
can be non-zero, see Example 7.5 below. At the same time, we know by Observation 3.7 that
K(X) = G(X) for perfect schemes. In other words, G-theory of perfect schemes can be non-
connective. This gives a negative answer to a question posed by [Kha22, Remark 3.2].

We now record a concrete example of this non-connectivity; see also [AMM22].

Example 7.5 (Nodal cubic curve). Let k = Fp. Consider the affine nodal cubic curve C0 =
Spec k[x, y]/

(
y2 − x2(x+ 1)

)
. This has a resolution of singularities by the affine line A1

0; the preim-
age of the singular point (0, 0) in C0 is a disjoint union of two points. Perfecting, we get a perfect
abstract blowup square

A1 pt⊔pt

C pt

The final piece of the associated long exact sequence in K-theory looks like

→ K0(A1)⊕K0(pt)→ K0(pt⊔pt)→ K−1(C)→ 0 looks like → Z⊕Z −→ Z⊕Z→ K−1(C)→ 0

with the map Z⊕Z −→ Z⊕Z given by the matrix(
1 1
1 1

)
.

It follows that K−1(C) = Z. Since K-theory in lower degrees vanishes, K−1(C, k) = k.

7.3 Toric varieties

We illustrate how KT and the trace map behave on perfectly proper toric varieties without any
smoothness assumptions: KT and KHT agree and the trace map is an isomorphism. This easily
follows from our setup and available literature [VV03; AHW09; CHWW09; CHWW14; CHWW15;
CHWW18]. In fact, the notion of dilation on the K-groups is given by the Frobenius and the
results of [CHWW14] can be reinterpreted and proved through perfect geometry. Also see [Ryc24,
Theorem 6.3.2] for related discussion of the comparison between KT

0 (−,C) and fixed-point schemes
for complex smooth toric varieties.

Discussion 7.6 (Toric resolutions). Let T0 be a split torus and X0 a toric variety with respect to
T0. Then one combinatorially defines a resolution by a smooth toric variety with respect to the same
torus T0 as in [Cox00, §5]. Furthermore, such a resolution is obtained from a sequence of partial
resolutions of the form [CHWW09, (2.2)] – these fit into abstract blowup squares

Y0 E0

X0 Z0

This square is a T0-equivariant abstract blowup of toric varieties for quotients of T0.

Observation 7.7. Let T be a perfect split torus and X any perfect toric variety. Then integrally

KT (X) = KHT (X).

Proof. For a perfectly smooth toric variety X we clearly have KT (X) = KHT (X). In general, work
by induction on the Krull dimension of X. Since both KT (−) and KHT (−) satisfy proper excision
by Theorem 3.11 and Lemma 3.15, looking at Discussion 7.6, the statement for X reduces to the
statement for Y , Z, E. Since Z and E have smaller Krull dimension and the statement is stable
under enlarging the torus, we have reduced the claim to the partial resolution Y . In finitely many
steps, we reduce to the smooth situation.
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The irreducible components of fixed-point schemes for toric varieties have a combinatorial de-
scription. First, FixT (X) over T has several horizontal components isomorphic to T and labelled by
the finite set of torus fixed-points |XT |. Over more special subvarieties of T , we get further vertical
components which can be read off from the fan combinatorics.

Assuming X is perfectly proper, H0(FixT
T
,O) injects into the direct sum

⊕
|XT |H0(

T
T ,O) of

functions on the horizontal components. It is cut out by the equalizer conditions given by restriction
to the vertical components.

Theorem 7.8. Let T be a perfect split torus and X any perfectly proper toric variety. Then the
trace map induces an equivalence

KT (X, k)
≃−→ RΓ(FixT

T
(X),O). (7.3.1)

and both sides are supported in homological degrees ≤ 0.

Proof. First assume X is smooth. Note that RΓ(FixT
T
(X),O) is supported in homological degrees

≤ 0 by perfectness; we claim that it vanishes in degrees ≤ −1 as well. Since (−)T is exact, it is
enough to check this on FixT (X). By perfect base change [BS17, Lemma 3.18], it is enough to check
it on Fixt(X) for each geometric point t of T . But now it follows from the fan combinatorics that
Fixt(X) is a disjoint union of (perfectly proper smooth) toric varieties6. Indeed, Fixt(X) is the
subvariety given by the set of those cones in the fan of X whose linear span contains t. We need to
prove that these cones decompose into a disjoint union of stars. Since X is smooth, the fan of X is
in particular simplicial. So if t lies in some cones σ1, σ2, it also lies in the intersection of their linear
spans, which is itself the linear span of a cone by simpliciality. We thus succeed by decomposing
the fixed cones according to the non-emptyness of their intersections. Since toric varieties have no
higher cohomology by [Cox00, end of proof of Theorem 5.1], we deduce that RΓ(FixT

T
(X),O) is

supported in degree zero.
Moreover, the desired isomorphism in degree zero follows from the description [VV03, Theorem

6.2] together with the properness of X. Indeed, the equalizer condition in [VV03] matches the
condition on global sections of the fixed-point scheme imposed by its vertical fibers via proper
excision. Hence the trace map is an isomorphism in degree zero. Since X is smooth, KT (X, k) is
supported in homological degrees ≥ 0. Moreover, by [VV03, Theorem 6.9] we in particular know
that KT (X) has no p-torsion, so KT (X, k) is supported in degree zero by Lemma 3.5. This finishes
the proof for smooth X; we in fact showed that the isomorphism (7.3.1) is supported in degree zero.

Now, both KT (−, k) and RΓ(FixT
T
(X),O) = HHT (−, k) satisfy perfect proper excision by The-

orem 3.11. By Discussion 7.6 and induction on dimension, the trace map is an isomorphism. Both
sides are then supported in homological degrees ≤ 0 by (4.1.2).

Note 7.9. When X is smooth (or more generally when the fan of X is simplicial), the above proof
actually shows that both sides are supported in homological degree 0.

However, negative degrees may occur in general. For an example, consider the fan in Z⊕3
spanned by the eight vertices (±2,±2,−1), (±1,±1, 1) and t ∈ T spanning the third coordinate
axis. Then Fixt(X) ∼= C4 ⊔ pt⊔pt, where C4 denotes a cyclic chain of four perfect P1’s. Resolving
C4 by the disjoint union of four perfect P1’s and computing RΓ(C4,O) from the associated abstract
blowup square, we deduce that H−1(C4,O) ∼= k ̸= 0. It follows from (4.1.3) and Lemma 4.2 that
KT
−1(X, k)

∼= RΓ−1(FixT
T
,O) ̸= 0. In particular, singular toric varieties may have nontrivial negative

equivariant algebraic K-theory, even after perfection.
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[HKT17] Tom Harris, Bernhard Köck, and Lenny Taelman. “Exterior power operations on
higher K-groups via binary complexes”. Annals of K-theory 2 (2017), pp. 409–450.
doi: 10.2140/akt.2017.2.409.

[Hoy20] Marc Hoyois. “Cdh descent in equivariant homotopy K-theory”. Documenta Mathe-
matica 25 (2020), pp. 457–482. doi: 10.4171/DM/754.

[HR22] Tamás Hausel and Kamil Rychlewicz. “Spectrum of equivariant cohomology as a fixed
point scheme”. preprint. 2022. url: https://arxiv.org/abs/2212.11836.

[HSS17] Marc Hoyois, Sarah Scherotzke, and Nicolò Sibilla. “Higher traces, noncommutative
motives, and the categorified Chern character”. Advances in Mathematics 309 (2017),
pp. 97–154. doi: 10.1016/j.aim.2017.01.008.

[Hum95] James E. Humphreys. Conjugacy classes in semisimple algebraic groups. Vol. 43.
Mathematical Surveys and Monographs. Americal Mathematical Society, 1995. doi:
10.1090/surv/043.

[Jia22a] Qingyuan Jiang. “Derived Grassmannians and derived Schur functors”. preprint. 2022.
url: https://arxiv.org/abs/2212.10488.

[Jia22b] Qingyuan Jiang. “Derived projectivizations of complexes”. preprint. 2022. url: https:
//arxiv.org/abs/2202.11636.

[Jia23] Qingyuan Jiang. “Derived categories of derived grassmannians”. preprint. 2023. url:
https://arxiv.org/abs/2307.02456.

[Kha20] Adeel A. Khan. “Algebraic K-theory of quasi-smooth blow-ups and cdh descent”.
Annales Henri Lebesgue 3 (2020), pp. 1091–1116. doi: 10.5802/ahl.55.

[Kha22] Adeel A. Khan. “K-theory andG-theory of derived algebraic stacks”. Japanese Journal
of Mathematics 17 (2022), pp. 1–61. doi: 10.1007/s11537-021-2110-9.

[KM00] Miriam Ruth Kantorovitz and Claudia Miller. “An explicit description of the Dennis
trace map”. Communications in Algebra 28 (2000), pp. 1429–1447. doi: 10.1080/
00927870008826904.

[KM21] Shane Kelly and Matthew Morrow. “K-theory of valuation rings”. Compositio Math-
ematica 157 (2021), pp. 1121–1142. doi: 10.1112/S0010437X21007119.
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